Conariant and Contranohiant nectors

Chamge of basis

Soy we have a vector spoce V (im field F) described by the bosis $B_{\text {dd }}=\left(v_{1}, \ldots, v_{m}\right)$
We com express mew bosis vectors $B_{\text {mew }}\left(\omega_{1}, \ldots, \omega_{m}\right)$ wht the dd bosis as follows: $\hat{w}_{j}=\sum_{i} a_{i j} \hat{v}_{i}$
$L a_{i, j}$ are the coordimates of the j-th mew basis vecton w_{j} wht the i-th old basis vector v_{i}

A nector \vec{z} in V com them be described by: $\vec{z}=\sum_{i} x_{i} \hat{v}_{i}=\sum_{j} y_{j} \hat{\omega}_{j}$
As $\hat{\omega}_{j}=\sum a_{i, j} \hat{v}_{i}$ we hove $x_{i}=\sum_{j} a_{i j} g_{j}$
That is: $\vec{z}_{\text {mav }}=A \vec{z}_{\text {old }}$ or $\vec{x}=A \vec{y}$

Comsequence

Bosis thonsformens as follows: $W=A^{\top} V$ where $W=\left[\hat{\omega}_{1}, \hat{\omega}_{2}, \ldots, \hat{\omega}_{m}\right]^{\top}$ and $V=\left[\hat{v}_{1}, \hat{v}_{2}, \ldots, \hat{v}_{m}\right]^{\top}$
e.g. $\hat{w}_{1}=a_{11} \hat{v}_{1}+a_{21} \hat{v}_{2}$ and $\hat{w}_{2}=a_{12} \hat{v}_{1}+a_{22} \hat{v}_{2}$

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{21}
\end{array}\right] \quad \text { and } \quad W=\left[\begin{array}{l}
\hat{w}_{1} \\
\hat{w}_{2}
\end{array}\right]=A^{\top} V=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right]\left[\begin{array}{l}
\hat{v}_{1} \\
\hat{v}_{2}
\end{array}\right]
$$

On the other hond a vector chomges as $\vec{y}=A^{-1} \vec{x}$ where y_{i} is the i-th coordimote in mew basis while x are in dd basis

That is, a vecton transfonms in the opposite woy w.i.t the basis arectons i.e. Comiranoniont

Temsons

A temsor is demoled by a symbod and collections sub-/saper-scripts Types:

All vectons in euclideom spoce are comtrononiont due to the metric being $\operatorname{diog}(1,1,1)$

- Temsor of rorok - $0 \Longrightarrow$ scalar e.g \varnothing
- Temsor of roork-1 \Longrightarrow vector e.g. x_{μ}, x^{μ}
- Temson of ronk-2 \Longrightarrow temsor e.g. $\sigma_{i j}, \sigma^{i j}$

Veclors

Types of vectors:

\longrightarrow Comtronationt x^{μ}, A^{μ}, \ldots i.e. Columm Vectons
\longrightarrow Tromsformoss opposite to bosis vectors

Similanly:

$$
T^{\prime \mu \nu}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} T^{\alpha \beta}
$$

$\longrightarrow\left(x^{\prime}\right)^{\nu}=\Lambda_{\mu}^{\nu} x^{\mu}$ or $\left(x^{\prime}\right)^{\nu}=\left(\frac{\partial x^{\prime \nu}}{\partial x^{\mu}}\right) x^{\mu} \longrightarrow$ This relation is nolid for enery contronariont nector
\longrightarrow Conahiont x_{μ}, A_{μ}, \ldots
\longrightarrow Tronsfonmens like basis
$\longrightarrow\left(x_{v}^{\prime}\right)=\left(\Lambda^{-1}\right)_{\mu}^{\nu} x_{\mu} \quad$ on $\left(x_{\nu}^{\prime}\right)=\left(\frac{\partial x_{\mu}}{\partial x_{\nu}^{\prime}}\right) x_{\mu} \longrightarrow$ This relation is nolid for everg convaniont vector

Dot product: $x^{\mu} \cdot x^{\nu}=x_{\nu} x^{\nu}=\eta_{\mu \nu} x^{\mu} x^{\nu}$
Matrix product: $\omega_{i}=\sigma_{i j} u_{j}$ im euclideom spoce

Kromecker Delta

$$
\delta_{i j}=\left\{\begin{array}{l}
1, i=j \\
0, i \neq j
\end{array} \Longrightarrow \vec{\nabla} \delta_{i j}=\frac{\partial \delta_{i j}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}=\vec{\nabla} \quad \text { ond } \quad \eta_{\mu \nu} \eta^{\mu \nu}=\eta_{\nu}^{\mu}=\delta_{\nu}^{\mu}\right.
$$

Leni-Cinita
$\vec{c}=\vec{a} \times \vec{b}$ i.e. $c_{i}=\varepsilon_{i j k} a_{j} b_{k}$
$\partial_{\mu} x^{\nu}=\delta_{\mu}^{\nu}$ and $\partial_{\mu} x_{\nu}=\eta_{\mu \nu}$ $\frac{\partial\left(\partial_{\alpha} x_{\beta}\right)}{\partial\left(\partial_{\mu} x_{\nu}\right)}=\delta_{\alpha}^{\mu} \delta_{\beta}^{\nu}$

Limits and Scales

Natural Units: $c=\hbar=k_{B}=1$
[Emerge] $]$ [la sss $]=[$ Temperature $]=[\text { length }]^{-1}:\left[T_{i m e}\right]^{-1}$
$[c]=L T^{-1}$
compton Wavelength: $\lambda_{c}=\frac{2 \pi \hbar}{m c}$
[h] =
[G] : $\quad G=(\hbar c) H_{p}^{-2}=H_{p}^{-2} \quad M_{p}$ Plonck Mass
Planck Scale:

$$
\begin{aligned}
& M_{p} \approx 10^{19} \mathrm{GeV} \\
& l_{p} \approx 10^{-33} \mathrm{~cm} \\
& t_{p} \approx 10^{-44} \mathrm{~s}
\end{aligned}
$$

Classical Field Theory

Maxwell's equations

$\vec{E}=-\vec{\nabla} \phi-\frac{\partial \vec{A}}{\partial t} \quad \vec{B}=\vec{\nabla} \times \vec{A}$
$\vec{\nabla} \cdot \vec{B}=0 \quad \frac{d \vec{B}}{d t}=-\vec{\nabla} \times \vec{E}$

Laghomgiam

Lagrangian: $L(t)=\int \alpha\left(\phi_{a}, \partial_{\mu} \phi_{a}\right) d x^{3} \quad$ Action: $S=\int_{t_{1}}^{t_{2}} d t \int d^{3} x d($
Lagrongiom Demsitg: $\mathcal{L}\left(\phi_{a}, \partial_{\mu} \phi_{a}\right)$
$S_{d}=\int d^{t_{d}} d \mathcal{L}$

The Lagrangian Dens. depends an an arbitrary 4-vec field, on its time derisodive but ali an its gradient instead of depending an $9, \dot{q}$ as ion classical dymonmics. why is that the case? Unlike discrete mechanics, fields contain large numbers of particles (\sim continuous medium). As such, saone properties will be described by a gradient

In field theory: $\mathcal{L}\left(\vec{\nabla} \phi, \nabla^{2} \phi, \nabla^{3} \phi, \ldots\right)$ instead of $\mathcal{L}(q, \dot{q})$

- Higher devinotives bring issues such as "Ghosts" which are umphogical states
- While in prim. we con deal with infinite derinotives, we tend to not consider infinite time derivatives as they moke \hat{H} umboumded from below i.e. mo bound state

Note: Lograngion and Action must be inoriont under the Lorentz group operations (i.e. Dotente Immoniant)

2 Aspects of a system

- Kinematics:
- Dgmoomics: How system evolves over time

Principle of least action: A system will evolve occonding to the path that mimimimizes the action

$$
\text { ie. } \delta S=0 \text { when going from } A \text { to } B
$$

Application of Principle of Least Action

Action: $S=\int d^{4} x \mathcal{L}$ where \mathcal{L} is the Lagrangian Density By principle of least action:

$$
\delta \delta=\int d^{4} x \delta \alpha=0 \quad \delta \alpha=\frac{\partial \alpha}{\partial \phi} \delta \phi+\frac{\partial \alpha}{\partial\left(\partial_{\mu} \phi\right)} \delta\left(\partial_{\mu} \phi\right)
$$

Exploiting Multiplication rule we hove:

$$
\frac{\partial \alpha}{\partial\left(\partial_{\mu} \phi\right)} \delta\left(\partial_{\mu} \phi\right)=\partial_{\mu}\left(\frac{\partial \alpha}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right)-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right) \delta \phi
$$

Them, we com rewrite the action as follows:
$\delta S=\int d^{4} x\left[\frac{\partial \alpha}{\partial \phi}-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right] \delta \varnothing+\int d^{4} x \partial_{\mu}\left[\frac{\partial \alpha}{\partial\left(\partial_{\mu} \phi\right)} \delta \varnothing\right]=\quad$ As all poohs hove fixed endpoints (i.e. A, B) at those endpoints $\delta \varnothing=0$

$$
\begin{aligned}
& =\int d^{4} x\left[\left[\frac{\partial \alpha}{\partial \phi}-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right] \delta \phi+\partial_{\mu}\left[\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \delta \phi\right]\right\}= \\
& =\int d^{4} x\left[\frac{\partial \alpha}{\partial \phi}-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}\right] \delta \phi=0
\end{aligned}
$$

Changes of the Laghongion by a total derivative do ant affect δS if $\delta \phi_{A}=\delta \phi_{B}=0$ which is the mecessang condition for the maw pooh to correspond to the dd pooh at the end points

In order for $\delta S=0$ for all paths with fixed endpoints A, B and $\delta \phi(A)=\delta \phi(B)=0$, we meed: $\frac{\partial \mathcal{L}}{\partial(\partial \mu \phi)}-\frac{\partial \mathcal{L}}{\partial \phi}=0 \quad$ "Euler-Lagranage Equation"
Example: Kleim-Gordom Equation
Lagromgion of a real scalar field: $\mathcal{L}=\frac{1}{2} h^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}$
Apply Eel: Lag. Eq. whit $\phi(\vec{x}, t)$:

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial \phi}=-m^{2} \phi \\
& \frac{\partial \alpha}{\partial\left(\partial_{\alpha} \phi\right)}=\frac{1}{2} \eta^{\mu \nu}\left[\frac{\partial\left(\partial_{\mu} \phi\right)}{\partial\left(\partial_{\alpha} \phi\right)} \partial_{\nu} \phi+\partial_{\mu} \phi \frac{\partial\left(\partial_{\nu} \phi\right)}{\partial\left(\partial_{\alpha} \phi\right)}\right]=\frac{1}{2} \eta^{\mu \nu}\left[\delta_{\alpha}^{\mu} \partial_{\nu} \phi+\partial_{\mu} \phi \delta_{\alpha}^{\nu}\right] \\
& \partial_{\alpha}\left[\frac{\partial \alpha}{\partial\left(\partial_{\alpha} \phi\right)}\right]=\frac{1}{2} \eta^{\mu \nu}\left[\delta_{\alpha}^{\mu} \partial_{\alpha} \partial_{\nu} \phi+\delta_{\alpha}^{\nu} \partial_{\alpha} \partial_{\mu} \phi\right]=\eta^{\mu \nu} \partial_{\mu} \partial_{\nu} \phi=\partial^{\mu} \partial_{\nu} \phi=\square \phi
\end{aligned}
$$

$$
\text { E. O.M: } \square \phi+m^{2} \phi=\ddot{\phi}-\nabla^{2} \phi+m^{2} \phi=0
$$

For $\alpha=\frac{1}{2} h^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi)$ we get $D \phi+\frac{\partial V}{\partial \phi}=0$
Example: First order Lagrongion

Comsicler the Lagromgiom: $\alpha=\frac{i}{2}\left(\psi^{*} \dot{\psi}-\dot{\psi}^{*} \psi\right)-\vec{\nabla} \psi^{*} \cdot \vec{\nabla} \psi-m \psi^{*} \psi$
we meed to treat ψ^{*} and ψ separately as they hove different dependencies due to complex conjugacy:

$$
\begin{aligned}
& \partial_{\mu} \psi=\dot{\psi}+\vec{\nabla} \psi \\
& \partial_{\mu} \psi^{*}=\dot{\psi}^{*}+\vec{\nabla} \psi^{*} \\
& \frac{\partial \mathcal{L}}{\partial \psi}=-\frac{i}{2} \dot{\psi}^{*}-m \psi^{*} \quad \frac{\partial \mathcal{L}}{\partial \psi^{*}}=\frac{i}{2} \dot{\psi}-m \psi \\
& \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)}=\left(\frac{\partial \mathcal{L}}{\partial \dot{\psi}}, \frac{\partial \mathcal{L}}{\partial \vec{\nabla} \psi}\right)=\left(\frac{i}{2} \psi^{*},-\vec{\nabla} \psi^{*}\right) \Longrightarrow \partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)}=\frac{i}{2} \dot{\psi}^{*}-\nabla^{2} \psi^{*} \quad \text { Because of some index we gt } \partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)}=\partial_{0} \frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \psi\right)}+\partial_{i} \frac{\partial \mathcal{L}}{\partial\left(\partial_{i} \psi\right)} \\
& \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)}=\left(\frac{\partial \mathcal{L}}{\partial \dot{\psi}^{*}}, \frac{\partial \mathcal{L}}{\partial \vec{\nabla} \psi^{*}}\right)=\left(-\frac{i}{2} \psi,-\vec{\nabla} \psi\right) \Longrightarrow \partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi^{*}\right)}=\partial_{0} \frac{\partial \mathcal{L}}{\partial\left(\partial_{0} \psi^{*}\right)}+\partial_{i} \frac{\partial \mathcal{L}}{\partial\left(\partial_{i} \psi^{*}\right)}=-\frac{i}{2} \dot{\psi}-\nabla^{2} \psi
\end{aligned}
$$

E.O.M for ψ : $i \dot{\psi}^{*}+m \psi^{*}-\nabla^{2} \psi^{*}=0$
E.O.M for $\psi^{*}:-i \psi+m \psi-\nabla^{2} \psi=0$

Example: Maxwell's equations
Proca Lagrangian: $\alpha=-\frac{1}{2}\left(\partial_{\mu} A_{\nu}\right)\left(\partial^{\mu} A^{\nu}\right)+\frac{1}{2}\left(\partial_{\mu} A^{\mu}\right)^{2}$
Notice that:

$$
\begin{aligned}
\partial_{\mu} A_{\nu}= & \left(\partial_{0} A_{0}+\partial_{i} A_{0}, \partial_{0} A_{i}+\partial_{i} A_{i}\right) \\
\partial^{\mu} A^{v}= & \left(\partial^{0} A^{0}+\partial^{i} A^{0}, \partial^{0} A^{i}+\partial^{i} A^{i}\right)=\left(\partial_{0} A^{0}-\partial_{i} A^{0}, \partial_{0} A^{i}-\partial_{i} A^{i}\right) \\
\left(\partial_{\mu} A^{\nu}\right)= & \left(\partial_{0} A_{0}\right)\left(\partial_{0} A^{0}\right)-\left(\partial_{0} A_{0}\right)\left(\partial_{i} A^{0}\right)+\left(\partial_{i} A_{0}\right)\left(\partial_{0} A^{0}\right)-\left(\partial_{i} A_{0}\right)\left(\partial_{i} A^{0}\right)+ \\
& +\left(\partial_{0} A_{i}\right)\left(\partial_{0} A^{i}\right)-\left(\partial_{0} A_{i}\right)\left(\partial_{i} A^{i}\right)+\left(\partial_{i} A_{i}\right)\left(\partial_{0} A^{i}\right)-\left(\partial_{i} A_{i}\right)\left(\partial_{i} A^{i}\right) \\
= & \eta^{\infty 0} \dot{A}_{0}^{2}-\eta^{\infty} \dot{A}_{0} \vec{\nabla} A_{0}+\eta^{\infty} \dot{A} \dot{\nabla}_{0} A_{0}-\eta^{\infty} \nabla^{2} A_{0}+\eta^{i i} \dot{A}_{i}^{2}-\eta^{i i} \dot{A}_{i} \vec{\nabla} A_{i}+\eta^{i i} \dot{A}_{i} \vec{\nabla} A_{i}-\eta^{i i} \nabla^{2} A_{i} \quad \text { As } A^{\mu}=\eta^{\mu \nu} A_{\nu} \\
= & \dot{A}_{0}^{2}-\dot{A}_{i}^{2}-\nabla^{2} A_{0}+\nabla^{2} A_{i} \\
\left(\partial_{\mu} A^{\mu}\right)^{2}= & \dot{A}_{0}^{2}-\nabla^{2} A_{i}
\end{aligned}
$$

The Lagrangian becomes: $\mathcal{L}=\frac{1}{2} \dot{A}_{i}^{2}-\nabla^{2} A_{i}+\frac{1}{2} \nabla^{2} A_{0}$

Let's white the Lagrongion ion a more useful way:

$$
\begin{aligned}
& \Rightarrow \partial^{\mu} A^{\nu}=\eta^{\mu \alpha} h^{\nu \beta} \partial_{\alpha} A_{\beta} \\
& \alpha=-\frac{1}{2} h^{\mu \alpha \alpha} h^{\nu \beta}\left(\partial_{\mu} A_{\nu}\right)\left(\partial_{\alpha} A_{\beta}\right)+\frac{1}{2}\left(\eta^{\mu \beta} \partial_{\mu} A_{\beta}\right)^{2}
\end{aligned}
$$

Let's exploit Euler Loghonge:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial A^{D}}=0 \\
& \frac{\partial \alpha}{\partial\left(\partial_{\omega} A_{\gamma}\right)}=-\frac{1}{2} \eta^{\mu \alpha} h^{\nu \beta}\left[\frac{\partial\left(\partial_{\mu} A_{\nu}\right)}{\partial\left(\partial_{\omega} A_{\gamma}\right)}\left(\partial_{\alpha} \partial A_{\beta}\right)+\left(\partial_{\mu} A_{\nu}\right) \frac{\partial\left(\partial_{\alpha} A_{\beta}\right)}{\partial\left(\partial_{\omega} A_{\gamma}\right)}\right]+\left(\eta^{\mu \beta} \partial_{\mu} A_{\beta}\right) \frac{\partial\left(h^{\mu \beta} \partial_{\mu} A_{\beta}\right)}{\partial\left(\partial_{\omega} A_{\gamma}\right)}= \\
& =-\frac{1}{2} \eta^{\mu \alpha} \eta^{\nu \beta}\left[\delta_{\mu}^{\omega} \delta_{\gamma}^{\nu}\left(\partial_{\alpha} \partial_{\beta}\right)+\left(\partial_{\mu} A_{\nu}\right) \delta_{\omega}^{\alpha} \partial_{\gamma}^{\beta}\right]+\left(\partial_{\mu} A^{\mu}\right) \eta^{\mu \beta} \delta_{\omega}^{\mu} \delta_{\gamma}^{\beta}= \\
& =-\frac{1}{2}\left[\eta^{\omega \alpha} \eta^{\partial \beta}\left(\partial_{\alpha} A_{\beta}\right)+\eta^{\mu \omega} \eta^{\nu \gamma}\left(\partial_{\mu} A_{\nu}\right)\right]+\left(\partial_{\mu} A^{\mu}\right) \eta^{\omega \gamma} \\
& =-\left(\partial^{\omega} A^{\gamma}\right)+\left(\partial_{\mu} A^{\mu}\right) \eta^{\omega \gamma} \\
& \partial_{\omega}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\omega} A_{\gamma}\right)}\right)=-\partial_{\omega} \partial^{\omega} A^{\gamma}+\partial_{\omega} \partial_{\mu} A^{\mu} \eta^{\omega \gamma}= \\
& =-\partial_{\omega} \partial^{\omega} A^{\gamma}+\partial^{\gamma} \partial_{\mu} A^{\mu}= \\
& =\partial_{\mu}\left(\partial^{\gamma} A^{\mu}\right)-\partial_{\omega}\left(\partial^{\omega} A^{\partial}\right)= \\
& =\partial_{\mu}\left(\partial^{\gamma} A^{\mu}-\partial^{\mu} A^{\gamma}\right)=-\partial_{\mu} F^{\mu \nu} \quad \omega \longmapsto \mu \text { as all } \omega \text { are contracted }
\end{aligned}
$$

Field Strength Tensor:

$$
{ }_{c} i \in\{1,2,3\}
$$

$$
\begin{aligned}
& F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu} \text { sher } F^{i 0}=E^{i} \text { and } F^{i j}=-\varepsilon^{i j k} B^{k} \quad F^{\mu \mu}=0 \\
& F^{\mu \nu} F_{\mu \nu}=\left(\partial^{\mu} A^{\nu}\right)\left(\partial_{\mu} A_{\nu}\right)-\left(\partial^{\mu} A^{\nu}\right)\left(\partial_{\nu} A_{\mu}\right)-\left(\partial^{\nu} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}\right)+\left(\partial^{\nu} A^{\mu}\right)\left(\partial_{\nu} A_{\mu}\right)= \\
& =\left(\partial_{\mu} A_{\nu}\right)^{2}+\left(\partial_{\nu} A_{\mu}\right)^{2}-2\left(\partial^{\mu} A^{\nu}\right)\left(\partial_{\nu} A_{\mu}\right)= \\
& =2[1 \\
& \mathcal{L}=-\frac{1}{4} F_{\alpha \beta} F^{\alpha \beta} \Longrightarrow \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}=2 F^{\mu \nu}-2 F^{\nu \mu}=4 F^{\mu \nu} \quad \text { as } F^{\mu \nu}=-F^{\nu \mu}
\end{aligned}
$$

Lagrangian

Once gat hove gut Lagrampions, you conn derive the equations of motion
\rightarrow The E-1. equations will be the somme as a point porticele but there will also be termondepending an the spatial gradient due 1 the presence of a field
\rightarrow While signs of the Lagromgions might on the metric signature, equations of motion will mot

The Lagrangian is defined as $L=T-U$

e.g. $\alpha=\frac{1}{2} h^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}= \pm \frac{1}{2} \dot{\phi}^{2} \mp(\vec{\nabla} \phi)^{2}-\frac{1}{2} m \phi^{2}$
$\square=\partial^{\nu} \partial_{\nu}=h^{\mu \nu} \partial_{\mu} \partial_{\nu}=\eta^{\omega} \partial_{0}^{2}+\eta^{i} \partial_{i}^{2}=\frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}$
$T=\int d^{3} x \frac{1}{2} \phi^{2}$
$u=\int d^{3} x\left[\frac{1}{2}(\nabla \phi)^{2}+\frac{1}{2} m^{2} \phi^{2}\right]$

Applying $E-L$ equations: $\ddot{\phi}-\nabla^{2} \phi=-m^{2} \phi$ ie. $\square \phi+m^{2} \phi=0$

In order to apply quantisation of the field are meed to move fromm real space to mamemitam spore

\longrightarrow Change of basis through Foukien Transform opplied to equations of motion
For a generic Laghongion: $\alpha=\frac{1}{2} \partial_{\mu} \partial^{\mu} \phi-V(\phi)$ we get $\partial_{\mu} \partial^{\mu} \phi+\frac{\partial V}{\partial \phi}=0$
Honmomic Oscillators and Fields: Check

Complex Scalar Field

$\alpha=\frac{i}{2}\left(\psi^{*} \dot{\psi}-\dot{\psi}^{*} \psi\right)-\vec{\nabla} \psi^{*} \cdot \vec{\nabla} \psi-m \psi^{*} \psi$
$\mathcal{L}_{\alpha}\left(\psi, \psi^{*}, \partial_{\mu} \psi, \partial_{\mu} \psi^{*}\right)$

Maxwell Lagrangian

$A^{\mu}=(\phi, \vec{A})$
Field Strength: $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \quad F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}$
The field strength and A^{μ} are Lorentz Impatient but ϕ and \vec{A} are mot.
$\alpha=-\frac{1}{2}\left(\partial_{\mu} A_{\nu}\right)\left(\partial^{\mu} A^{\nu}\right)+\frac{1}{2}\left(\partial_{\mu} A^{\mu}\right)^{2} \quad$ "Proca Logromgion"
$\alpha \sim \frac{1}{2} \dot{A}_{i}^{2}$ but $m o \dot{A}_{0}^{2}$ term ie. m kinetic term in ϕ
In addition, α has mo term proportional to $A^{2}=A_{\mu} A^{\mu}$ ie. mo mass term \Longrightarrow Field quant hos 0 mass
$\left(\partial_{\mu} A^{\nu}\right)\left(\partial_{\mu} A^{\nu}\right)=$

Hoxuell's equation of indian: $\partial_{\mu} F^{\mu \nu}=0$ and $\alpha=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$

Lagramgiam is local

\longrightarrow Nom-Locality: Events com influence other evemts immediately evem though they are veng for owog i.e. Everg event is cosually conmeded to previous events Locality: Only events within light cone dre coseally comorected
\longrightarrow There ore no terms commectiong two onbitratry positions e.g. no tehmos like $L=\int d^{3} x d^{3} g \phi(x) \phi(y)$
\longrightarrow Closest mon-locality ginem by grodient which commects \vec{x} to $\vec{x}+\delta \vec{x}$

Loremtz Imarioonce

- Lows of mature are relativistic i.e. inclependent of imertial reference frame
- Lonente tronsformations include:

1) Boosts
e.g. $\Lambda_{v}^{\mu}=\left[\begin{array}{cccc}\gamma & \gamma^{v} & 0 & 0 \\ -\gamma & \gamma & 0 & 0 \\ \vdots & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0\end{array}\right]$ i.e. Boost along x-oxis
2) Rotations

$$
\text { tations } \Lambda_{v}^{\mu}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { i.e. notation doout } z \operatorname{cox} \text { es }
$$

$$
\begin{aligned}
& d s^{2}=d x^{\mu} d x_{\nu}=\eta^{\mu \nu} d x_{\mu} d x_{\nu}=d t^{2}-(d \vec{x})^{2} \\
& \partial_{\mu}=\left(\frac{\partial}{\partial t}, \vec{\nabla}\right) \\
& \square=\partial^{\mu} \partial_{\mu}=\frac{\partial^{2}}{\partial t^{2}}-\vec{\nabla}^{2} \\
& \Lambda_{\sigma}^{\mu} \eta^{\sigma \tau} \Lambda_{\tau}^{\nu}=\eta^{\mu \nu}
\end{aligned}
$$

Loremtz tromsf: $x^{\mu} \longmapsto \Lambda_{v}^{\mu} x^{\nu} \quad \longmapsto$ old field at the equindent location im unshifted frome

$$
\begin{aligned}
& x^{\mu} \longmapsto \Lambda_{v}^{\mu} x^{\nu} \\
& \phi(x) \longmapsto \phi^{\prime}(x)= \\
& =\varnothing\left(\Lambda^{-1} x\right) \\
& \text { ald field at the equivdent lication in unshifted fromene } \\
& \longmapsto
\end{aligned}
$$

Active tromsf: Thonsform field
Passive tromsf: Thomsform reference frome

Vector fields thomsfonam conoriontly on contronokiont wht basis wectons:
Comtronohioont: $A^{\mu}(x) \longmapsto \Lambda_{v}^{\mu} A^{v}\left(\Lambda^{-1} x\right)$
Conohiont : $A_{\mu}(x) \longmapsto\left(\Lambda^{-1}\right)_{v}^{\mu} A_{\nu}\left(\Lambda^{-1} x\right)$

Example: Kleim-Gordom Equation is Lonentz Imoriont

Applying Lotentz Tronsform to Scalar Field: $\phi\left(x^{\mu}\right) \longrightarrow \phi^{\prime}\left(x^{\mu}\right)=\varnothing\left(\left(\Lambda_{\mu}^{\nu}\right)^{-1} x^{\mu}\right) \quad$ N.B. x^{μ} is contrononhiont
\longrightarrow For the soke of simplicity we will write from now an: $\phi(x) \longmapsto \phi^{\prime}(x)=\phi(y)$ where $y=\Lambda^{-1} x$

What about the devinuotive $\partial_{\mu} \phi$? $\partial_{\mu} \varnothing$ is a cononiont quantity so it should thansformen just like basis vectons
That is: $\partial_{\nu} \phi^{\prime}(x)=\Lambda_{\mu}^{\nu} \partial_{\mu} \phi(x) \quad$ or $\quad \partial_{\mu} \phi(x) \longmapsto\left(\Lambda^{-1}\right)_{\mu}^{\nu}\left(\partial_{\nu} \phi^{\prime}(x)\right)=\left(\Lambda^{-1}\right)_{\mu}^{\nu}\left(\partial_{\nu} \phi(g)\right)$

Looking of the Kleim-Gordom Logrongien $\mathcal{L}=\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2}$ we get:

$$
\begin{aligned}
\mathcal{L}(x) \longmapsto \mathcal{L}(g) & =\frac{1}{2} \eta^{\mu \nu}\left(\Lambda^{-1}\right)_{\mu}^{\alpha}\left(\Lambda^{-1}\right)_{\nu}^{\beta^{2}}\left(\partial_{\alpha} \phi\right)\left(\partial_{\beta} \phi\right)-\frac{1}{2} m^{2} \phi^{2}(g)= \\
& =\frac{1}{2}\left(\Lambda^{-1}\right)_{\mu}^{\alpha} \eta_{\mu \nu}\left(\Lambda^{-1}\right)_{\nu}^{\beta}\left(\partial_{\alpha} \phi\right)\left(\partial_{\beta} \phi\right)-\frac{1}{2} m^{2} \phi^{2}(g)= \\
& =\frac{1}{2} \eta^{\alpha \beta}\left(\partial_{\alpha} \phi(g)\right)\left(\partial_{\beta} \phi(\beta)\right)-\frac{1}{2} m^{2} \phi^{2}(g)=\mathcal{L}(g)
\end{aligned}
$$

As Lagrangion is Lorentz immokiant, to hove oction be imn. we meed $d^{4} x=d^{4} y$ where $y=\Lambda^{-1} x$ i.e. Jocobion $\delta=1$
The Jocobion will not be exoctly 1 but cortrectionn is nerhy timy \Longrightarrow dorente voriont corrections are small and conn be immokiont
e.g. $y=x+\delta x \Longrightarrow \frac{\partial y^{\mu}}{\partial x^{\mu}}=\delta_{v}^{\mu}+\partial_{v} \delta x^{\mu}$ and $\delta=\operatorname{det}\left(\frac{\partial y^{\mu}}{\partial x^{\nu}}\right)=1+\partial_{v}\left(\delta x^{\mu}\right) \approx 1$
N.B. Nbt all Lograngians are Lotentz imnotiont. For a Lorentz imnoriont Logrongions we meed for tiane and spoce to be an equal footiong i.e. All iondices should be contriocted by ameons of Lotentz imn. dbject sach as η. If Logrongian is imwohiant them so is the action fon reoscons discussed above e.g. First order Logrongian is mot Lor. imw. as it is limech ion time deninotines while it is quodnatic ion spodial der. (i.e. No propen conmroction) e.g. Moxxwell Loghongian is Lorenté imv. as all indices are conhrocted. Check by doing $A^{\mu}(x) \longrightarrow \Lambda_{y}^{\mu} A^{\nu}\left(\Lambda^{-1} x\right)$

Noether's Theorem

Relates sygmmethies of Action (i.e. Loremte symmethy, imternal symmetries, Gauge symmethies, ...) to consehned quantities \longrightarrow Fon enery contionuaus syymmeting of the Lagrangion thete exists a consetwed cutrent J^{μ} such that $\partial_{\mu} J^{\mu}=\frac{\partial J^{\circ}}{\partial t}+\vec{\nabla} \cdot \vec{J}=0$

\author{

- Action?
}
N.B. Consemved currents imply conserwed chonge Q, bat conseruotion of curtent is a strangen stotement as it ianplies that chorgeg is consehved locally
$Q=\int d^{3} x j^{0} \Longrightarrow \frac{d Q}{d t}=\int d^{3} x \frac{d j}{d t}=-\int d^{3} x \vec{\nabla} \cdot \vec{j}=0$ assuming $\vec{j} \longrightarrow 0$ as $|\vec{x}| \longrightarrow \infty$
In a volucre V :
$Q_{V}=\int_{V} d^{3} x j^{0} \Longrightarrow \frac{d Q_{V}}{d t}=-\int_{V} d^{3} x \vec{\nabla} \cdot \vec{J}=-\iint_{A} \cdot d \vec{S} \quad$ Ang chorge leoving V most be occoumted for by a 3 -vector current \vec{J} out of A \longrightarrow Local Chonge

Phoof:
Let's consider a thomsfonmation of the following type:
$x^{\mu} \longmapsto x^{\mu}+\delta x^{\mu}$ and $\phi_{a} \longmapsto \phi_{a}^{\prime}=\phi_{a}+X_{a}$ where $X_{a}=\delta \phi_{a}$
Im onder to presetwe poth: $X_{a}\left(\vec{x}_{A}, t_{A}\right)=X_{a}\left(\vec{x}_{B}, t_{B}\right)=0$

The effect and the Action S and Lognomgian Demsity \mathcal{L} are:
$s \longmapsto s^{\prime}$ and $\mathcal{L} \longmapsto \mathcal{L}^{\prime}$
Fon this tronsformation to be a symmetry of the cction: $\delta S=\delta\left(s-s^{\prime}\right)=0$
By looking ot δS we see: $\delta S=\int d^{4} x \delta \mathcal{L}$
That is, $\delta S=0$ if

- $\delta \mathcal{L}=0$ (i.e. α is immoricont)
- $\delta \mathcal{L}=\partial_{\mu} F^{\mu}$ (i.e \mathcal{L} chomges by a total derinotive) as long as F^{μ} vomishes at empoints of poth

We sow when dehining the Eulen-Logronge equations that:
$\delta \mathcal{L}=\frac{\partial \mathcal{L}}{\partial \phi_{a}} \delta \phi_{a}+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta\left(\partial_{\mu} \phi_{a}\right)=\left[\frac{\partial \mathcal{L}}{\partial \phi_{a}}-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)}\right] \delta \phi_{a}+\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}\right)=\partial_{\mu} F^{\mu} \quad$ when a complies the $a^{\text {th }}$ field ϕ_{a} If Euler-Logroonge equations ore sotisfied:
$\delta \mathcal{L}=\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} \delta \phi_{a}\right)=\partial_{\mu} F^{\mu} \Longrightarrow \partial_{\mu} j^{\mu}=0$ if $j^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{a}\right)} X_{a}(\phi)-F^{\mu}(\phi) \quad$ Sumon over all fields due to repeoted a index?

Example: Tromsformation and Emergy- Momentiom Temson

Comsiden imfinitesional translations such as the following: $x^{\mu} \longrightarrow\left(x^{\prime}\right)^{\mu}=x^{\mu}-\varepsilon^{\mu}$ where $\varepsilon^{\mu}=$ const i.e. Spotial and time tronslation
As x^{μ} is a controviationt quantity and as a result it transforms opposite to basis nectohs
We com white $\delta x^{\mu}=\left(\frac{\partial x^{\prime \mu}}{\partial x^{\mu}}\right)=-\varepsilon^{\mu}$ and $x^{\mu}=\left(x^{\prime}\right)^{\mu}+\varepsilon^{\mu}$
Plus sians beccuuse man dependence

The feeld thomsforms as follocos: $\phi_{a}\left(x^{\mu}\right) \longrightarrow \phi_{a}^{\prime}\left(x^{\mu}\right)=\phi_{a}\left(x^{\mu}+\varepsilon^{\mu}\right)=\phi_{a}\left(x^{\mu}\right)+\frac{\partial \phi\left(x^{\mu}\right)}{\partial x^{\mu}} \delta x^{\mu}=\phi_{a}\left(x^{\mu}\right)+\varepsilon^{\mu} \partial_{\mu} \phi_{a}\left(x^{\mu}\right)$
i.e. $\phi_{a}\left(x^{\mu}\right) \longrightarrow \varnothing_{a}\left(x^{\mu}\right)+X_{a}(\phi)$ where $X_{a}(\phi)=\varepsilon^{\mu} \partial_{\mu} \phi_{a}\left(x^{\mu}\right)$

How cbes the Lagrangion chomog?

$$
\begin{aligned}
\mathcal{L}(\phi) \longrightarrow \mathcal{L}\left(\phi^{\prime}\right) & =\mathcal{L}(\phi)+\left(\mathcal{L}\left(\phi^{\prime}\right)-\mathcal{L}(\phi)\right)(\Delta \phi / \Delta \phi)= \\
& =\mathcal{L}(\phi)+(\partial \mathcal{L} / \partial \phi) \delta \phi= \\
& =\mathcal{L}(\phi)+\left(\partial \alpha / \partial x^{\mu}\right)\left(\partial x^{\mu} / \partial \phi\right) \delta \phi= \\
& =\mathcal{L}(\phi)+\left(\partial_{\mu} \mathcal{L}\right)\left(\partial_{\mu} \phi_{a}\right)^{-1}\left(\varepsilon^{\mu} \partial_{\mu} \phi_{a}\right)= \\
& =\mathcal{L}(\phi)+\varepsilon^{\mu} \partial_{\mu} \mathcal{\alpha}
\end{aligned}
$$

i.e. $\delta \alpha=\partial_{\mu}\left(\varepsilon^{\mu} \alpha\right) \cdot \partial_{\mu} F^{\mu}$ where $F^{\mu}=\varepsilon^{\mu} \alpha$

Action is symmetric wht thoslations in spoce (Homm. is conserwed)
ond in Time (emengy is comsetwed)

Noether's Curremt:

Four consetwed currents i.e. one for eoch component of ε^{μ}
$\left(j^{\nu}\right)_{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\nu} \phi_{a}\right)} X_{a}-F^{\nu}=\varepsilon^{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\nu} \phi_{a}\right)} \partial_{\mu} \phi_{a}-\varepsilon^{\nu} \mathcal{L}$
$=\varepsilon^{\mu}\left[\frac{\partial \mathcal{L}}{\partial\left(\partial_{v} \phi_{a}\right)} \partial_{\mu} \phi_{a}-\delta_{\nu}^{\mu} \mathcal{L}\right]=\varepsilon^{\mu} T_{\mu}^{\nu}$ Emergg-Homentum Temsor
As ε^{μ} is a const. T_{μ}^{ν} is also a conserved cultent i.e. $\partial_{\nu} T_{\mu}^{\nu}=0$ The four consemved quontities are:
$E=\int d^{3} x T^{\infty}$ and $P^{i}=\int d^{3} x T^{0 i}$

Am example of the Energy -Momentum Temson
$\alpha=\frac{1}{2} \eta^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-\frac{1}{2} m^{2} \phi^{2} \Longrightarrow T^{\mu \nu}=\partial^{\mu} \phi \partial^{\nu} \phi-\eta^{\mu \nu} \alpha$
Using eq. of andion ane com phove $\partial_{\mu} T^{\mu \nu}=0$
E. O.M: $\square \varnothing+m^{2} \phi=\ddot{\varnothing}-\nabla^{2} \phi+m^{2} \phi=0$ i.e. $D \phi=-m^{2} \phi$

$$
\begin{aligned}
T^{\mu \nu} & =\partial^{\mu} \phi \partial^{\nu} \phi-\frac{1}{2} h^{\mu \nu} h^{\alpha \beta} \partial_{\alpha} \phi \partial_{\beta} \phi+\frac{1}{2} h^{\mu \nu} m^{2} \phi^{2}= \\
& =\partial^{\mu} \phi \partial^{\nu} \phi-\frac{1}{2} h^{\mu \nu}\left[\partial^{\beta} \phi \partial_{\beta} \phi-m^{2} \phi^{2}\right] \\
& =\partial^{\mu} \phi \partial^{\nu} \phi-\frac{1}{2} h^{\mu \nu}\left[\frac{1}{2} \dot{\phi}^{2}-(\vec{\nabla} \phi)^{2}-m^{2} \phi^{2}\right]
\end{aligned}
$$

$$
\begin{aligned}
\partial_{\mu} T^{\mu \nu} & =\left(\partial^{2} \phi\right) \partial^{\nu} \phi+\partial^{\mu} \phi\left(\partial_{\mu} \partial^{\nu} \phi\right)+\eta^{\mu \nu}\left(m^{2} \phi\right) \partial_{\mu} \phi-\frac{1}{2} \eta^{\mu \nu}\left[\left(\partial_{\mu} \partial^{\beta} \phi\right) \partial_{\beta} \phi+\partial_{\beta} \phi\left(\partial_{\mu} \partial_{\beta} \phi\right)\right]= \\
& =\left(\partial^{2} \phi\right) \partial^{\nu} \phi+\partial^{\mu} \phi\left(\partial_{\mu} \partial^{\nu} \phi\right)+m^{2} \phi \partial^{\nu} \phi-\partial_{\beta} \phi\left(\partial^{\nu} \partial_{\beta} \phi\right)= \\
& =\underbrace{\left[\left(\partial^{2} \phi\right)-D \phi\right]}_{0} \partial^{\nu} \phi+\partial^{\mu} \phi\left(\partial_{\mu} \partial^{\nu} \phi\right)-\partial_{\beta} \phi\left(\partial_{\beta} \partial^{\nu} \phi\right)=0
\end{aligned}
$$

Comserned Quontitics:

$$
\begin{array}{ll}
\text { Emengy: } \quad E=\int d^{3} x T^{\infty}=\frac{1}{2} \int d^{3} x\left[\dot{\phi}^{2}+(\vec{\nabla} \phi)^{2}+m^{2} \phi^{2}\right] & \longleftarrow \text { Time thanslation Sgmometry }] \text { Spoce-time tromslation } \\
\text { Homentum: } \quad p^{i}=\int d^{3} x T^{0 i}=\int d^{3} x \dot{\phi} \dot{d}^{i} \phi & \longleftarrow \text { Spdid Translations Sgommetry }
\end{array}
$$

N.B. In this example $T^{\mu \nu}$ is symmetrage (i.e $T^{\mu \nu}=-T^{\mu \nu}$). Howener in some coses it isn't

Nenertheless we com odd a mew Tenssor $\Gamma^{\mu \mu \nu}$ that is onti-symmetric w.r.t. eachonge of the finst two indices i.e. $\Gamma^{S^{\mu \nu}}=-\Gamma^{R S V}$ As a result $\partial_{\mu} \partial_{\rho} \Gamma^{\mu \nu}=0$ and $\partial_{\mu} \theta^{\mu \nu}=0$, where $\theta^{\mu \nu}$ is the new $E-M$ temsor $\theta^{\mu \nu}=T^{\mu \nu}+\partial_{\rho} \Gamma^{\mu \nu}$
$\partial_{\mu} \partial_{\rho} \Gamma^{\rho \mu \nu}=-\partial_{\mu} \partial_{\rho} \Gamma^{\mu \rho \nu}=-\partial_{\rho} \partial_{\mu} \Gamma^{\mu \nu \nu}=-\left[\partial_{\mu} \partial_{\rho} \Gamma^{\rho \mu \nu}\right] \Longrightarrow \partial_{\mu} \partial_{\rho} \Gamma^{\rho \mu \nu}=0$
e.g. Gemeral relativity in Flat Spocetiome $\quad \theta^{\mu \nu}=-\left.\frac{2}{\sqrt{-g}} \frac{\partial(\sqrt{-g} \alpha)}{\partial g_{\mu \nu}}\right|_{g_{\mu \nu}=\eta_{\mu \nu}}$

Exomple: Loremtz Tronsforman and Angular Momenturm
What conservied quombity do Lorentz Tranof. correspond to?
Whot is the equindent of rotational symmetry?
Imfinitesimal formon of doremtz Tromsf.: $\Delta_{v}^{\mu}=\dot{\delta}_{v}^{\mu}+\omega_{v}^{\mu}$ whemecker- ${ }_{v}$ elta? ω_{v}^{μ} is infionitesional
Comdition for Lokente Tranos: $\Lambda_{\alpha}^{\mu} \eta^{\alpha \beta} \Lambda_{\beta}^{\nu}=\eta^{\mu \nu} \Longrightarrow\left(\delta_{\sigma}^{\mu}+\omega_{\sigma}^{\mu}\right) \eta^{\sigma \tau}\left(\delta_{\tau}^{\nu}+\omega_{\tau}^{\nu}\right)=$ $=\delta_{\sigma}^{\mu} \eta^{\sigma \tau} \delta_{\tau}^{\nu}+\delta_{\sigma}^{\mu} \eta^{\sigma \tau} \omega_{\tau}^{\nu}+\omega_{\sigma}^{\mu} \eta^{\sigma \tau} \delta_{t}^{\nu}+\omega_{\sigma}^{\mu} \eta^{\sigma \tau} \omega_{t}^{\nu}=$
$=\eta^{\mu \nu}+\delta_{\sigma}^{\mu} \omega^{\nu \sigma}+\omega_{\sigma}^{\mu} \delta^{\nu \sigma}+\omega_{\sigma}^{\mu} \omega^{\nu \sigma}=$
$=\eta^{\mu \nu}+\omega^{\nu \mu}+\omega^{\mu \nu}+\omega_{\sigma}^{p} \omega^{\nu \sigma}$

As ω is imfinitesimal we hove: $\omega_{\sigma}^{\mu} \omega^{\nu \sigma} \cong 0$
Them for $\left(\delta_{\sigma}^{\mu}+\omega_{\sigma}^{\mu}\right) \eta^{\sigma t}\left(\delta_{\tau}^{\nu}+\omega_{\tau}^{\nu}\right)=\eta^{\mu \nu}$ we meed $\omega^{\nu \mu}+\omega^{\mu \nu}=0$
$\omega^{\mu \nu}$ is anti-symmetnic
There 6 anti-sgm 4×4 motrices which is equal to the number of lonemtz thonss (3 boosts +3 notations)
As seem eortiear, $\phi(x) \longmapsto \phi^{\prime}(x)=\varnothing\left(\Lambda^{-1} x\right)$
As $\omega^{\mu \nu}=-\omega^{\nu \mu}$ we have $\left(\Lambda^{-1}\right)_{v}^{\mu}=\delta_{v}^{\mu}-\omega_{v}^{\mu}$ and so $x^{\nu} \longmapsto x^{\mu}-\omega_{v}^{\mu} x^{\nu}$
$\delta x=\left(x^{\mu}-\omega_{v}^{\mu} x^{\nu}\right)-x^{\nu}=-\omega_{v}^{\mu} x^{\nu}$
\longrightarrow infininiterimol change

The chomge in the field is given bg:
$\phi^{\prime}=\varnothing+\left(\phi^{\prime}-\varnothing\right)(\Delta x / \Delta x)=\varnothing+\frac{\partial \varnothing}{\partial x^{\mu}} \delta x=\varnothing-\omega_{\nu}^{\mu} x^{\nu} \partial_{\mu} \phi$ or $\delta \phi=-\omega_{\nu}^{\mu} x^{\nu} \partial_{\mu} \phi$

The change in the Lagrangian is gineem by:

```
\(\alpha \longmapsto \alpha^{\prime}\) and \(\delta \alpha=\alpha^{\prime}-\alpha\)
\(\alpha^{\prime}=\alpha+\delta \alpha=\alpha+\left(\alpha^{\prime}-\alpha\right)(\Delta x / \Delta x)=\)
    \(=\alpha+\frac{\partial L}{\partial x} \delta x=\delta-\omega_{v}^{\mu} x^{\nu}(\partial \mu \alpha)\)
\(\delta \alpha=-\omega_{\nu}^{\mu} x^{\nu}\left(\partial_{\mu} \delta\right)=\partial_{\mu}\left(-\omega_{\nu}^{\mu} x^{\nu} \mathcal{L}\right)\) as \(\omega_{\mu}^{\mu}=0\) due to its conte- syymmenetry
```


Nether's Current

$\delta \varnothing=-\omega_{\nu}^{\mu} \nu^{\nu} \partial_{\mu} \phi$
$F^{\mu}=-\omega_{v}^{\mu} x^{\nu} \alpha$
$j^{\beta}=\omega_{v}^{\rho} x^{\nu} \mathcal{L}-\omega_{\nu}^{\mu} x^{\nu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\rho} \phi\right)} \partial_{\mu} \phi=-\omega_{v}^{\mu} T_{\mu}^{\beta} x^{\nu} \quad$ where $T_{\mu}^{\beta}=\frac{\partial \alpha}{\partial\left(\partial_{g} \phi\right)} \partial_{\mu} \phi-\delta_{\mu}^{\beta} \alpha$
While this a simple current, we are more imenented in the constituting currents $\left.(j)^{\mu \nu}\right)^{\prime \nu}$, are for exch ω_{v}^{μ}
As $\omega^{\mu \nu}=-\omega^{\mu \nu}$ we hose andy 6 unique entries and thus currents
As $\partial_{g}(j \rho)^{\mu \nu}=0$ we can Hem strip owing the $\omega^{\mu \nu}$ common faction
$(j \rho)^{\mu \nu}=x^{\nu} T_{\mu}^{\beta}$ or $(J \rho)^{\mu \nu}=x^{\nu} T_{\mu}^{\beta}-x^{\mu} T_{\nu}^{\beta}$
The comsernued current for each $\left(g^{\mu}\right)^{\mu \nu}$ is gineem by $\left(J^{\circ}\right)^{\mu \nu}$
As a result the conserved quantity is given by:

$$
Q^{\mu \nu}=\int d^{3} x\left(x^{\nu} T_{\mu}^{0}-x^{\mu} T_{v}^{0}\right)
$$

For $\mu, \nu=1,2,3$ the Lorentz tromonforkenations are rotations $\Longrightarrow Q^{\mu \nu}=Q^{i j} \equiv$ Any. Hame.
For $\mu=0$ or $\nu=0$ the lotente transf. de boots $\Longrightarrow Q^{\mu \nu}=Q^{0 i}=Q^{i 0}$
What is $Q^{0 i}$?

$$
\begin{aligned}
Q^{0 i}=\int d^{3} x\left(x^{0} T^{0 i}-x^{i} T^{\infty}\right) \Longrightarrow \frac{d Q^{0 i}}{d t} & =0=\int d^{3} x T^{0 i}+t \int d^{3} x \frac{\partial T^{0 i}}{\partial t}-\frac{d}{d t} \int d^{3} x x^{i} T^{\infty}= \\
& =P_{i}+t \frac{d P^{i}}{d t}-\frac{d}{d t} \int d^{3} x x^{i} T^{\infty}
\end{aligned}
$$

As P_{i} is constr. we hove $\frac{d}{d t} \int d^{3} x x^{i} T^{\infty}=$ comet \Longrightarrow Center of emerges of Gid trons at constant velocity

Internal Symmetries

So for we hove looked at transformations of spocetiane and fields at the same time eeg. Lorentz Transform

Example: Field Rotation

$\mathcal{L}=\partial_{\mu} \psi^{*} d^{\mu} \psi-v\left(|\psi|^{2}\right)$
$\psi \longrightarrow e^{i \alpha} \psi \Longrightarrow \delta \psi=i \alpha \varphi$ if $\alpha \ll 1$
$\psi^{*} \longrightarrow e^{-i \alpha} \psi^{*} \Longrightarrow \delta \psi^{*}=-i \alpha \psi$ if $\alpha \ll 1$
$\mathcal{L} \longrightarrow \mathcal{I}^{\prime}=(\overbrace{\left.e^{i \alpha}\right)}^{=1}\left(e^{-i \alpha}\right) \partial_{\mu} \psi^{\prime} \partial^{\mu} \psi-V\left(\mid \psi^{2}\right)=\mathcal{L} \quad \delta \mathcal{L}=0$
Lagrangian is imootiont under this thomsophnation
The consumed current is Hem: $j^{\mu}=i\left(\partial^{\mu} \psi^{*}\right) \psi-i \psi^{*}\left(\partial^{\mu} \psi\right)$

Consider in Scalar Fields labeled by ϕ_{a} withe same cos.
The Laghangoion is then:

$$
\mathcal{L}=\frac{1}{2} \sum_{a=1} \partial_{\mu} \phi_{a} \partial^{n} \phi_{a}-\frac{1}{2} \sum_{a=1}^{n} m^{2} \phi_{a}^{2}-g\left(\sum_{a=1}^{n} \phi_{a}^{2}\right)^{2}
$$

This Lagrangian is imostiant unmet man-Abdion symmetry group $G=O(m)$ or $S O(m)$ For complex fields, we con construct Lagrangians that are imoctiont under SO (m)

Nam - Albion sygnmetrics of this tyre ore khoum as global symmelines

A cate trick

Consider an internal sgmmexing trons formation of the kind $\delta \psi=\alpha \varphi$ where $\alpha=$ consort.
We sow eorlieon that there thomsfonmations hove $\delta \alpha=0$
Now, $\alpha \longrightarrow \alpha(x)$ and $\delta \alpha=\left(\partial_{\mu} \alpha\right) h^{\mu}(\phi)=\partial_{\mu}\left(\alpha h^{\mu}\right)-\alpha \partial_{\mu} h^{\mu} \quad$ such that $\delta \alpha=0$ when $\alpha(x)=$ comet Them:
$\delta S=\int d^{4} x \delta \alpha=\int d^{4} x \partial_{\mu}\left(\alpha h^{\mu}\right)-\int d^{4} x \alpha \partial_{\mu} h^{\mu}=-\int d^{4} x \alpha(x) \partial_{\mu} h^{\mu}$ $A_{S} \delta S=0, \partial_{\mu} h^{\mu}=0$ ie. $h^{\mu}=j^{\mu}$
N.B. If you workout an example with $\alpha(x)$ you will see that only dericaticie terms contricale $6 h^{1 R}$
N.B. This works also for mann-Abelian
symmetries but $\alpha(x)$ is mot
a function bat a matrix

Hamiltonian Formalism
Consider the scalar field (s) $\phi_{a}(x)$ with Lagrangian Density $\mathcal{L}\left(\phi_{a}, \dot{\phi}_{a}, \vec{\nabla} \phi\right)=\mathcal{L}(x)$ (as ϕ depends an x) we define the Generalised Homenturn conjugate to ϕ_{a} as $\pi^{a}(x)=\left(\partial \mathcal{L} / \partial \dot{\phi}_{a}\right)$

The Homiellonion Density \mathcal{H} is defined as follows: $\mathcal{L}=\pi^{a}(x) \dot{\phi}_{a}(x)-\mathcal{L}(x)$ such that $H=\int d^{3} x X$ The equations of motion are given by:

$$
\dot{\phi}(\vec{x}, t)=\frac{\partial H}{\partial \pi(\vec{x}, t)} \text { and } \dot{\pi}(\vec{x}, t)=-\frac{\partial H}{\partial \phi(\vec{x}, t)} \Longrightarrow D_{0} \text { mot look Lorentz Immoniont! }
$$

 time. Nonetheless, all final answers must be Lorentz Imworicont for a relativistic theory: we dwogs hove to check!

Example: A real Scalar Field
Consider $\mathcal{L}=\frac{1}{2} \dot{\phi}^{2}-\frac{1}{2}(\vec{\nabla} \phi)^{2}-V(\phi)$ Son a real scalar field ϕ

The generalised momentum is $\pi(x)=\dot{\phi}$
Homidlonion Density $H=\pi(x) \dot{\phi}-\mathcal{L}=\pi^{2}-\frac{1}{2} \pi^{2}+\frac{1}{2}(\vec{\nabla} \phi)^{2}+V(\phi)=\frac{1}{2} \pi^{2}+\frac{1}{2}(\vec{\nabla} \phi)^{2}+V(\phi)$
Homilltomion: $H=\int d^{3} x\left[\frac{1}{2} n^{2}+\frac{1}{2}(\vec{\nabla} \phi)^{2}+V(\infty)\right]$
As we sow eonhier Energy is conserved for this systems and mow we com see that the Hamillomion is equal to the total emerge

Camonxical quontization: Process to og from gemeralised coondinates and momemta (i.e. Harmiltomiom formalism) to quantum theony by promotimg them to openators
e.g. Classical Dymamics: $q_{a} \longrightarrow \hat{q}_{a}$ and $p^{a} \longrightarrow \hat{p}^{a}$
N.B. By allowing ϕ and π to become openator we hove separated \vec{x} and t and thus lost thock of Lorente Inorionce. All time depemdence sits in the states $|\psi\rangle$ whic evolne occoholing to $i \frac{d|\psi\rangle}{d t}=H|\psi\rangle$
N.B. $|\psi\rangle$ is a functional i.e. a function containing all possible field configurations

These confriguraticns are momy as the fields hove ingimite degrees of freechom
$|\psi\rangle$ is octed upan by ϕ, π
Free Theorios
Determing spectruam of H is tgpically aerny hand as there are imfimite degress of freedom
Howener, in free theovies ane com write the dyynomics of a sogtem sach that all d.o.f. enolve independently
\rightarrow Fhee theonies hove gemerally Quodratic Lagrogians and limeoh e.o.m

Example: Classical KG equation

Classical kleim-Gondoos e.0.m fon scalan field $\phi(\vec{x}, t): \partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0$
We con decouple degrees of freedom through Founien tromsf: $\varnothing(\vec{x}, t)=\frac{1}{(2 n)} \int d^{3} p e^{i \vec{p} \cdot \vec{x}} \phi(\vec{p}, t)$
The equation becommo: $\left(\frac{\partial^{2}}{\partial t^{2}}+\left(\vec{p}^{2}+m^{2}\right)\right) \phi(\vec{p}, t)=\ddot{\phi}(\vec{p}, t)+\omega_{p}^{2} \phi(\vec{p}, t)=0$

This equation is equinodent to a harmonsic oscillator with ong. frea. $\omega_{p}=\sqrt{\vec{p}^{2}+m^{2}}$ i.e. dispension relationship
The most gemenal solution to $K G$ equation is an imfinite super position of hohmomic ascillatons with different mamemtum
As $\phi(\vec{p}, t)$ is a hormanic oscillator $\forall \vec{p}$, to quantize $\varnothing(\vec{x}, t)$ we must quantize the infjinite mumben of hohmonnic ascillatons

The Simple Hahmomic Oscillaton

Polemitial emergy: $U(q)=\frac{1}{2} k q^{2}=\frac{1}{2} m \omega^{2} x^{2}$
Kimetic emengy: $K(p)=\frac{1}{2} m \dot{x}^{2}$
Hamiltomion: $H=\frac{1}{2} p^{2}+\frac{1}{2} \omega^{2} q^{2}$ where $q=m x^{2}$ and $p=\dot{q}$ with $[q, p]=i$

We now define the roising and lowering operations or "creation" and "comihilations" operatorns: $a=(\sqrt{\omega / 2}) q+i(\sqrt{2 \omega})^{-1} p, a^{\dagger}=(\sqrt{\omega / 2}) q-i(\sqrt{2 \omega})^{-1} p$
We cons white: $q=(\sqrt{2 \omega})^{-1}\left(a+a^{+}\right)$and $q=-i(\sqrt{\omega / 2})\left(a-a^{\dagger}\right)$
Exploitiong these relations we get: $\left[a, a^{+}\right]=1$ as $[q, p]=q p-p q=-i(1 / 2)\left[a^{2}-\left(a^{+}\right)^{2}-a a^{+}+a^{+} a-a^{2}+\left(a^{+}\right)^{2}-a a^{+}+a^{+} a\right]=i\left[a a^{+}-a^{+} a\right]=i\left[a, a^{+}\right]=i$

$$
\text { Them: } q^{2}=(2 \omega)^{-1}\left[a^{2}+\left(a^{+}\right)^{2}+a a^{+}+a^{\dagger} a\right] \quad p^{2}=-(\omega / 2)\left[a^{2}+\left(a^{+}\right)^{2}-a a^{+}-a^{\dagger} a\right]
$$

$H=\frac{1}{2} w\left(a a^{+}+a^{+} a\right)=\frac{1}{2} w\left(\left[a, a^{+}\right]+2 a^{\dagger} a\right)=\omega\left(a^{\dagger} a+\frac{1}{2}\right) \quad$ Look at innuerted horamonic ascillaton
$\left[H, a^{+}\right]=H a^{+}-a^{+} H=\omega\left[a^{+}\left(a a^{+}\right)+\frac{1}{2} a^{+}-\left(a^{+}\right)^{2} a-\frac{1}{2} a^{+}\right]=\omega a^{+}\left[a a^{+}-a^{+} a\right]=\omega a^{+}$
$[H, a]=H a-a H=\omega\left[a^{+}(a)^{2}+\frac{1}{2} a^{+}-a a^{+} a-\frac{1}{2} a\right]=\omega\left[a^{+} a-a a^{+}\right] a=-\omega a$

Let $|E\rangle$ be an eigenstate of H sach that $H|E\rangle=E|E\rangle$.
Them: $H a|E\rangle=([H, a]+a H)|E\rangle=(E-\omega)_{a}|E\rangle=H|E-\omega\rangle$ where $|E-\omega\rangle=a|E\rangle$ i.e. cmmihilation op
$H a^{\dagger}|E\rangle=\left(\left[H, a^{\dagger}\right]+a^{\dagger} H\right)|E\rangle=(E+\omega) a^{\dagger}|E\rangle=H|E+\omega\rangle$ where $|E+\omega\rangle=a^{\dagger}|E\rangle$ i.e. creation op.

If emergeg is bound frown below we hove a groumd state $\left|E_{0}\right\rangle$ such that $\left|E_{m}\right\rangle=\left(a^{+}\right)^{m}\left|E_{0}\right\rangle$ and $H\left|E_{0}\right\rangle=\frac{1}{2} \omega\left|E_{0}\right\rangle$ and $H\left|E_{m}\right\rangle=(m+1 / 2)\left|E_{m}\right\rangle$
Be owote that $\left|E_{m}\right\rangle$ stales de and get motrmalized i.e. $\left\langle E_{m} \mid E_{m}\right\rangle \neq 1$

We wond to opply thase canceptist of $\phi(\vec{x})$ and $\pi(\vec{x})$
The sodationss bo the classical $K G$ equation are two plame wove solutions: $\phi(\vec{p}, t)=A e^{i \omega_{p} t}+B e^{-i \omega_{p} t} \quad$ (Where did the mass ge?)

We com thus write $\phi(\vec{x}), \pi(\vec{x})$ as an infinite sum of hatmonsic ascillator states as follows:
$\phi(\vec{x})=\int d^{3} p(2 \pi)^{-3} q e^{i \vec{p} \cdot \vec{x}}=\int \frac{d^{3} p}{\left.(2 n)^{3}\right)} \frac{1}{\sqrt{2 \omega \vec{p}}}\left[a \vec{p} e^{i \vec{p} \cdot \vec{x}}+a^{\dagger} \overrightarrow{\vec{p}} e^{-i \vec{p} \cdot \vec{x}}\right]$
$\pi(\vec{x})=\int d^{3} p(2 \pi)^{-3} p e^{i \vec{p} \cdot \vec{x}}=\iint \frac{d d_{p} p}{(2 n) 3}(-i)\left(\sqrt{\omega_{\vec{p}} / 2}\right)\left[a \vec{p} e^{i \vec{p} \cdot \vec{x}}-a_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right] \quad$ Nole: $\delta^{3}(\vec{x}-\vec{y})=\int \frac{d^{3} p}{(2 n 1)^{p}} e^{i \vec{p} \cdot(\vec{x}-\vec{y})}$

Equivalence of commulators

Cloim

$$
\begin{aligned}
& {\left[\phi_{a}(\vec{x}), \pi^{b}(\vec{y})\right]=i \delta(\vec{x}-\vec{y}) \delta_{b}^{a}} \\
& {\left[a \vec{p}, a_{\vec{q}}^{\dagger}\right]=(2 \pi)^{3} \delta(\vec{p}-\vec{q}) \delta_{b}^{a}} \\
& \text { and from night to leff }
\end{aligned}
$$

Right \rightarrow Left
We com derive some communtation relationships gram their definition

$\left[a_{\vec{p}}, a_{\vec{q}}^{+}\right]=-\left[b_{\vec{a}}^{+}, i a_{\vec{p}}\right]=a_{\vec{p}} a_{\vec{q}}^{+}-a_{\vec{q}}^{+}, a_{\vec{p}} \Longrightarrow A_{s}$ operatots dere differemt, suritching labobs might affect comutaton
Them, $\left[a_{\vec{p}},{ }^{b} a_{\vec{q}}\right]=\left[a_{a}^{+}, b^{b}, a_{\vec{q}}^{+}\right]=0$ which holds with oun claim
Now lel's check whethen $\left[a \vec{p}, a_{\vec{q}}^{+}\right]=(2 \pi)^{3} \delta(\vec{p}-\vec{q}) \delta_{b}^{a}$ holds by explicitely computing $\left[\phi_{a}(\vec{x}), \pi_{b}(\vec{y})\right]$

$$
\begin{aligned}
& =\int \frac{d^{3} p{ }^{b} \frac{a}{(\pi)^{6}} \frac{1}{2 i}}{\frac{\omega_{a}}{\omega_{p}}}\left\{\left[a_{\vec{p}}, a_{\vec{q}}^{b}\right] \exp [i(\vec{p} \cdot \vec{x})+i(\vec{q} \cdot \vec{y})]-\left[a_{\vec{p}},{ }^{b} a_{\vec{q}}^{+}\right] \exp [i(\vec{p} \cdot \vec{x})-i(\vec{q} \cdot \vec{y})]+\right. \\
& +\left[\left[a_{\vec{p}}^{+}, a_{\vec{q}}\right] \exp [-i(\vec{p} \cdot \vec{x})+i(\vec{q} \cdot \vec{y})]-\left[\hat{a}_{\vec{p}}^{+}, a_{q}^{+}\right] \exp [-i(\vec{p} \cdot \vec{x})-i(\vec{q} \cdot \vec{y})]\right\}= \\
& =\int \frac{d^{3} p^{3} q_{q}}{(2 \pi)^{b}} \frac{1}{2 i} \sqrt{\frac{\omega_{q}}{\omega_{p}}}\left\{\left[{ }^{a} a^{+} \vec{p},{ }^{b} a_{\vec{q}}\right] e^{i(\vec{q} \cdot \vec{b} \cdot \vec{p} \cdot \vec{x})}-\left[a_{a_{\vec{p}}},{ }^{b} a_{\vec{q}}^{+}\right] e^{i(\vec{p} \cdot \vec{x} \cdot \vec{q} \cdot \vec{z})}\right\}= \\
& =\int \frac{d^{p} p^{3} q}{\left.(2 \pi)^{3}\right)^{i}} \frac{i(2 \pi)^{3}}{2} \left\lvert\, \frac{\omega_{q}}{\omega_{p}}\left\{\delta(\vec{p}-\vec{q}) \delta_{b}^{a} e^{i(\vec{q} \cdot \vec{q}-\vec{p} \cdot \vec{x})}+\delta(\vec{p}-\vec{q}) \delta_{b}^{a} e^{i(\vec{p} \cdot \vec{x}-\vec{q} \cdot \vec{q})}\right\}=\right. \\
& =\delta_{b}^{a} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{i}{2}\left[e^{i \vec{p}(\vec{x}-\vec{y})}+e^{i \vec{p} \cdot(\vec{y}-\vec{x})}\right]=\frac{i}{2} \delta_{b}^{a}[\delta(\vec{x}-\vec{y})+\delta(\vec{y}-\vec{x})]=i \delta_{b}^{a} \delta(\vec{x}-\vec{y})
\end{aligned}
$$

We hove provem that the abose daim hold from right to left.
Left \longrightarrow Right
With labelt argument ue com eosily show: $\left[\phi_{a}(\vec{x}), \phi_{b}(\vec{y})\right]=\left[\pi^{a}(\vec{x}), \pi^{b}(\vec{y})\right]$
we now hove to prove that $\left[{ }^{a} a_{p},{ }^{b} a_{\vec{q}}^{+}\right]=(2 \pi)^{3} \delta(\vec{p}-\vec{q}) \delta_{b}^{a}$ wing $\left[\phi_{a}(\vec{x}), \pi^{b}(\vec{y})\right]=i \delta(\vec{x}-\vec{y}) \delta_{b}^{a}$
For this are meed an expressian of $a_{\vec{p}}, a_{\hat{p}}^{+}$in terinoss of $\phi(\vec{x}), \pi(\vec{x})$
we hove that:

$$
\begin{aligned}
& \phi_{p}(\vec{x})=(d / d \vec{p}) \phi(\vec{x})=(2 \pi)^{-3}\left(\sqrt{2 \omega_{p}}\right)^{-1}\left[a_{\vec{p}} e^{i \vec{p} \cdot \vec{x}}+a^{\dagger} \vec{a}^{-i \vec{p} \cdot \vec{p}}\right] \text { and } \pi_{p}(\vec{x})=(d / d \vec{p}) \pi(x)=(2 \pi)^{3}(-i)\left(\sqrt{\omega_{p} / 2}\right)\left[a \vec{p} e^{i \vec{p} \cdot \vec{x}}-a_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right] \\
& a_{\vec{p}}=(1 / 2)(2 \pi)^{3}\left(\sqrt{2 \omega_{p}}\right)\left[\phi_{p}(\vec{x})+i \omega_{\vec{p}}^{-\vec{p}} \pi_{p}(\vec{x})\right] e^{-i \vec{p} \cdot \vec{x}} \\
& a_{\vec{p}}=(1 / 2)(2 \pi)^{3}\left(\sqrt{2 \omega_{p}}\right)\left[\phi_{p}(\vec{x})-i \omega_{\vec{p}}^{-1} \pi_{p}(\vec{x})\right] e^{+i \vec{p} \cdot \vec{x}}
\end{aligned}
$$

Left \longrightarrow Right
Let's look at the structure of $\phi_{\vec{p}}$ and π_{p}
$\varnothing_{p}=(2 \pi)^{-3} \phi(\vec{p}) e^{i \vec{p} \cdot \vec{x}}$ where $\varnothing(\vec{p})=\int d d^{3} x \phi(\vec{x}) e^{-i \vec{p} \cdot \vec{x}} \Longrightarrow \phi_{p}=e^{i \vec{p} \cdot \vec{x}} \int \frac{\int^{3} x}{(2 n]^{3}} \phi(\vec{x}) e^{-i \vec{p} \cdot \vec{x}}$

$$
\pi_{p}=(2 \pi)^{-3} \pi(\vec{p}) e^{i \vec{p} \cdot \vec{x}} \text { where } \pi(\vec{p})=\iint^{3} x \pi(\vec{x}) e^{-i \vec{p} \cdot \vec{x}} \Longrightarrow \pi_{p}=e^{i \vec{p} \cdot \vec{x}} \int \frac{\int}{(2 \pi x)]}\left(\frac{d x}{(2 \pi)}\right](\vec{x}) e^{-i \vec{p} \cdot \vec{x}}
$$

Them we com white them doom as:

$$
\begin{aligned}
& a_{\vec{p}}=(1 / 2)(2 \pi)^{3}\left(\sqrt{2 \omega_{p}}\right)\left[\phi_{p}(\vec{x})+i \omega_{\vec{p}}^{-1} \pi_{p}(\vec{x})\right] e^{-i \vec{p} \cdot \vec{x}} \Longrightarrow a_{\vec{p}}=\int d_{i=3} x\left[\sqrt{\frac{\omega_{p}}{2}} \phi(\vec{x})+\frac{i}{\sqrt{2 w_{p}}} \pi(\vec{x})\right] e^{-i \vec{p} \cdot \vec{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { As } e^{i 2 \vec{p} \cdot \vec{z}}=\int d^{3} y \delta(\vec{x} \cdot \vec{y}) e^{i 2 \vec{p} \cdot \vec{y}} \text { we have: } \\
& a \vec{p}=\int d^{3} x\left[\sqrt{\frac{\omega p_{p}}{2}} \phi(\vec{x})+\frac{i}{\sqrt{2 u_{p}}} \pi(\vec{x})\right] e^{-i \vec{p} \cdot \vec{x}} \\
& \alpha_{\hat{p}}^{+} \overrightarrow{=\int} d^{3} x\left[\sqrt{\frac{2 u}{2}} \phi(\vec{x})-\frac{1}{\sqrt{2 L} \omega_{p}} \pi(\vec{x})\right] e^{-i \vec{p} \cdot \vec{x}} \\
& {\left[{ }^{a} a_{\vec{a}},{ }^{b} a_{q}^{+}\right]=\int d^{3} x d^{3} y\left\{\frac{1}{2} \sqrt{\omega_{p} \omega_{q}}\left[\phi_{a}(\vec{x}), \phi_{b}(\vec{g})\right] e^{-i(\vec{p} \vec{x} \cdot \vec{a} \cdot \vec{g})} \frac{i}{2} \sqrt{\frac{\omega_{p}}{\omega_{q}}}\left[\phi_{a}(\vec{x}), \pi^{b}(\vec{g})\right] e^{-i(\vec{p} \vec{x} \cdot \vec{q} \overrightarrow{\vec{q}})}+\frac{i}{2} \sqrt{\frac{\omega_{q}}{\omega_{p}}}\left[\pi_{a}(\vec{x}), \phi_{b}(\vec{y})\right] e^{-i(\vec{p} \cdot \vec{x} \cdot \vec{a} \cdot \vec{g})}+\frac{1}{2 \sqrt{\omega_{p} \omega_{q}}}\left[\pi_{a}(\vec{x}), \pi_{b}(\vec{g})\right)\right]}
\end{aligned}
$$

$$
\begin{aligned}
& =\int d^{3} x d^{3} y\left(\frac{1}{2 i}\right)\left[i \delta(\vec{x} \cdot \vec{y}) \delta_{b}^{a} e^{i(p \cdot \vec{x}-\vec{q} \cdot \vec{y})}+i \delta(\vec{y} \cdot \vec{x}) \delta_{b}^{a} e^{-i(\vec{p} \cdot \vec{x}-\vec{q} \cdot \vec{g})}\right\} \\
& =\int d^{3} x e^{i(\vec{p}-\vec{a}) \cdot \vec{x}} \delta_{b}^{a}=(2 \pi)^{3} \delta(\vec{x}-\vec{g}) \delta_{b}^{a}
\end{aligned}
$$

Similanty, exploiting $\left[\phi_{\hat{k}}, \phi(x)\right]=0$ we com prove $\left[a_{\vec{p}}, a_{\vec{p}}\right]=0$
The thamellemian
For the Lagrangian density $\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{H} \phi-V(\phi)$ the thamillomion is given by $H=\int d^{3} x\left[\frac{1}{2} \Gamma^{2}+\frac{1}{2}(\vec{\nabla} \phi)^{2}+V(\phi)\right]$
we dos hove that:

$$
\begin{aligned}
& \phi(\vec{x})=\int \frac{\left.\int_{p} \frac{p}{(2 \pi}\right)}{\left(\sqrt{2} \omega_{p}\right)^{-1}}\left[a_{\vec{p}} e^{i \vec{p} \cdot \vec{x}}+\vec{a}_{p}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right] \\
& \pi(\vec{x})=\int \frac{\int \vec{p}_{p} p}{\left(2 p^{3}\right)}(-i) \sqrt{\frac{u_{p}}{2}}\left[a \vec{p} e^{i \vec{p} \cdot \vec{x}}-\vec{\alpha}_{\dot{p}} e^{-i \vec{p} \cdot \vec{x}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{\int^{\beta_{p} p^{B} q}(2 \pi)^{6}}{(-1-1)} \sqrt{2} \sqrt{\omega_{p} \omega_{q}}\left[\vec{a}_{p} \vec{a}_{q} e^{i(\vec{p} \cdot \vec{x}+\vec{q} \cdot \vec{x})}-a_{\vec{p}} a^{+} \vec{q} e^{i \vec{p} \cdot \vec{x}-i \vec{q} \cdot \vec{x}}-\alpha_{\vec{p}}^{+} a_{\vec{q}} e^{-i(\vec{p} \cdot \vec{x}-\vec{q} \cdot \vec{x})}+a_{\vec{p}}^{+} a^{+} \vec{q} e^{i(\vec{p} \cdot \vec{x}+\vec{q} \cdot \vec{x})}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\iint^{\frac{J^{3} p}{(2 \pi)^{6}}}(i)^{2} \frac{\vec{p} \cdot \vec{q}}{2 \sqrt{u_{p} \omega_{q}}}\left[\vec{a}_{p} \overrightarrow{a_{q}} e^{i(\vec{p} \cdot \vec{x}+\vec{q} \cdot \vec{x})}-a_{\vec{p}} a_{\vec{q}}^{+} e^{i \vec{p} \cdot \vec{x}-i \vec{q} \cdot \vec{x}}-a_{\vec{p}}^{+} a_{\vec{q}} e^{-i(\vec{p} \cdot \vec{x}-\vec{q} \cdot \vec{x})}+a_{\vec{p}}^{+} a_{\vec{q}}^{+} e^{i(\vec{p} \cdot \vec{x}+\vec{q} \cdot \vec{x})}\right]
\end{aligned}
$$

If $V(\phi)=m^{2} \phi^{2}$ we have:

Them:

$$
\begin{aligned}
& =-\int \frac{d^{3} p \beta_{q}}{(2 \pi)^{\dagger}} \frac{1}{\sqrt{\omega_{p} \omega_{q}}}\left[\omega_{p} \omega_{q}+\vec{p} \cdot \vec{q}\right]\left[\left[\left(\left[a_{\vec{p}}^{1}, a_{\vec{q}}\right]+a_{\vec{q}} a_{\vec{p}}\right) e^{i(\vec{p}+\vec{q}) \cdot \vec{x}}+\left(\left[a_{\vec{p}}^{+}, a_{\vec{q}}^{+}\right]+a_{\vec{q}}^{+} a_{\vec{p}}^{+}\right) e^{-i(\vec{p}+\vec{q}) \cdot \vec{x}}\right]+\right. \\
& \left.-\left[\left(\left[a_{\vec{p}}, a_{\vec{q}}^{+}\right]+a_{\vec{q}}^{+} a_{\vec{p}}\right) e^{i(\vec{p} \cdot \vec{q}) \cdot \vec{x}}+\left(\left[a_{\vec{p}}^{+} a_{\vec{q}}\right]+a_{\vec{q}} a_{\vec{p}}^{+}\right) e^{-i(\vec{p}-\vec{q}) \cdot \vec{z}}\right]\right\}
\end{aligned}
$$

As a result:

$$
\begin{aligned}
& \frac{1}{2}\left[n^{2}(x)+(\vec{\nabla} \phi)^{2}\right]+V(\phi)=\int \frac{d^{3} p{ }^{3} \vec{a}}{(2 \pi)^{6}} \frac{1}{2 \sqrt{\omega_{p} \omega_{q}}}\left[m^{2}+\omega_{p} \omega_{q}+\vec{p} \cdot \vec{q}\right]\left[\left(\left[a_{\vec{p}} a_{\vec{q}}-a_{\vec{q}} a_{\vec{p}}-\left[a_{\vec{p}}, a_{\vec{q}}\right]\right) e^{i(\vec{p}+\vec{q}) \cdot \vec{x}}+\left(a_{\vec{p}}^{+} a_{\vec{q}}^{+}-a_{\vec{q}}^{+} a_{\vec{p}}^{+}-\left[\alpha_{\vec{p}}^{+}, a_{\vec{q}}^{+}\right]\right) e^{-i(\vec{p}+\vec{q}) \cdot \vec{x}}\right]+\right. \\
& \left.+\left[\left(\alpha_{\vec{p}}^{+} a_{\vec{q}}+a_{\vec{q}} a_{\vec{p}}^{+}+\left[a_{\vec{p}}^{+}, a_{\vec{q}}\right]\right) e^{-i(\vec{p}-\vec{q}) \cdot \vec{x}}+\left(a_{\vec{p}} a_{\vec{q}}^{+}+a_{\vec{q}}^{+} a_{\vec{p}}+\left[a_{\vec{p},}, a_{\vec{q}}\right]\right) e^{i(\vec{p}-\vec{q}) \cdot \vec{x}}\right]\right\}= \\
& =\int \frac{d^{3} p d^{3} q}{(2 \pi)^{6}} \frac{\left[m^{2}+\omega_{p} \omega_{q}+\vec{p} \cdot \vec{q}\right]}{2 \sqrt{\omega_{p} \omega_{q}}}\left\{2\left[a_{\vec{p}}, a_{\vec{q}}\right] e^{i(\vec{p}+\vec{q}) \cdot \vec{x}}+2\left[\alpha_{\vec{p}}^{+}, a_{q}^{+}\right] e^{-i(\vec{p}+\vec{q}) \cdot \vec{x}}+2 a_{p}{ }^{+} e^{i(\vec{p}-\vec{q}) \cdot \vec{x}}+2 a_{\vec{p}}^{+} a_{\vec{q}} e^{-i(\vec{p}-\vec{q}) \cdot \vec{x}}\right\} \\
& =\int \frac{d^{3} p d_{q}^{3}}{(2 \pi)^{6}} \frac{\left[m^{2}+\omega_{p} \omega_{q}+\vec{p} \cdot \vec{q}\right]}{\sqrt{\omega_{p} \omega_{q}}}\left[a_{\vec{p}} a_{\vec{q}}^{+} e^{i(\vec{p}-\vec{p}) \cdot \vec{x}}+a^{+} \vec{p} a_{\vec{q}} e^{-i(\vec{p}-\vec{q}) \cdot \vec{x}}\right]
\end{aligned}
$$

The Homillomion them becomes:

$$
\begin{aligned}
H & =\int \frac{d^{3} x d^{3}{ }^{3} d^{3} q}{(2 \pi)^{6}} \frac{\left[m^{2}-\omega_{p} \omega_{q}-\vec{p} \cdot \vec{q}\right]}{\sqrt{\omega_{p} \omega_{q}}}\left[a_{\vec{p}} a_{\vec{q}}^{+} e^{i(\vec{p}-\vec{p}) \cdot \vec{x}}+a^{+} \vec{p} a_{\vec{q}} e^{-i(\vec{p}-\vec{q}) \cdot \vec{x}]=}\right. \\
& =\int \frac{d^{3} d^{3} a_{q}}{(2 \pi)^{6}} \frac{\left[m^{2}+\omega_{p} \omega_{q}+\vec{p} \cdot \vec{q}\right]}{\sqrt{\omega_{p} \omega_{q}}}\left[a_{\vec{p}} a_{\vec{q}}^{+}(2 \pi)^{3} \delta(\vec{p}-\vec{q})+a^{+} \vec{p} a_{\vec{q}}(2 \pi)^{3} \delta(\vec{p}-\vec{q})\right]= \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{\left[m^{2}+\omega_{p}^{2}+p^{2}\right]}{\omega_{p}}\left[a_{\vec{p}} a_{\vec{p}}^{+} \overrightarrow{ }+a_{\vec{p}}^{+} a_{\vec{p}}\right]= \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{\left[m^{2}+\omega_{p}^{2}+p^{2}\right]}{\omega_{p}}\left[2 a^{+} \vec{p} a_{\vec{p}}+\left[a_{\vec{p}}, a_{p}^{+} p\right]=\right. \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{2\left(m^{2}+\omega_{p}^{2}+p^{2}\right)}{\omega_{p}}\left[a^{+} \vec{p} a_{\vec{p}}+(2 \pi)^{3} \delta(0)\right] \\
& \left.=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{\left.4 \omega_{p}\right)\left[a^{+} \vec{p}\right.}{L_{p}} a_{\vec{p}}+(2 \pi)^{3} \delta(0)\right] \quad \text { I fistoke }
\end{aligned}
$$

The Hamilltonion $H=\int \frac{d^{3} p}{\left.(2 \pi)^{3}\right)} \omega_{\vec{p}}\left[a_{\vec{p}}^{\dagger} a_{\vec{p}}+\frac{1}{2}(\pi \pi)^{3} \delta(0)\right]$ mot anly thas a dellia fanction but it abo divenoges as $\vec{p} \rightarrow \infty$, what to do?
This is a deltia function that evoluate at ceno(where it is ∞) $\forall \vec{p}$

Vacuum
Assume that emerge eigenstates are bounded from below by "nocuum" state $|0\rangle$ with emerog eigemnolue E_{0} such that a $\vec{p}|0\rangle v \vec{p}$.
The emerge com be computed b means of the Homillomion operator:

$$
\begin{aligned}
H|0\rangle=E_{0}|0\rangle & =\left[\int \frac{d^{3} p}{(2 \pi)^{3}}\left[a_{p}^{+} a_{\vec{p}}+\frac{1}{2}(2 \pi)^{3} \delta^{3}(0)\right]\right]|0\rangle= \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}}\left[a_{\vec{p}}^{+} a_{\vec{p}}\right]|0\rangle+\frac{1}{2}\left[\int d^{3} p \omega_{\vec{p}} \delta^{3}(0)\right]|0\rangle= \\
& =\frac{1}{2}\left[\int d^{3} p \omega_{\vec{p}} \delta^{3}(0)\right]|0\rangle=\infty|0\rangle \Longrightarrow E_{0}=\infty
\end{aligned}
$$

In the above expression there actually two infinities present:

- Imfha-hed dinchogences arising due to the infinity of spoce (i.e Long wonelemgth divergence)
L consider the volume of a box of sides $L: \quad V=\int_{-L / 2}^{L / 2} d^{3} x$ and when $L \rightarrow \infty \quad V=\lim _{L \rightarrow \infty} \int_{-L / 2}^{L / 2} d^{3} x=\left.\lim _{L \rightarrow \infty} \int_{-L / 2}^{L / 2} d^{3} x e^{i \vec{p} \cdot \vec{x}}\right|_{\vec{p}=0}=(2 \pi)^{3} \delta(0)=\infty$
\rightarrow We com adjust for this by computing emerge density $\varepsilon_{0}=E_{0} / V=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2} w \vec{p}$
- Ultra -videt divergence ohising due to the breok-doum of our theory ot high \vec{P} (i.e. Short distances, high frequencies)
\longrightarrow Momifests as $\varepsilon_{0} \rightarrow \infty$ as $|\vec{p}| \rightarrow \infty$

There's a wog to ded with this infinities by considenimg that ios phonics we only measure emehogy differences (ie. we do mod oneosure E_{0} directly) We com thus remap the Homiltomion $H|\psi\rangle \longrightarrow H|\psi\rangle-E_{0}$ i.e. by toking nocuum as reference
The Hormilloniam thus becomes: $H=\int \frac{d^{3} p}{(2 \pi)^{3}} w_{\vec{p}} a_{\vec{p}}^{\dagger} a_{\vec{p}}$
Normal Ordering \longrightarrow Useful to extract finite port of infinities
The above Hommiltomion is anehely the result of om ordering ambiguity that ohises in the quantization of classical theories e.g. $H=(1 / 2)\left(\omega_{q}-i p\right)\left(\omega_{q}+i p\right)$ upon quantization maturally gives $H=w a^{+} a$

We define a string of operators $\varnothing_{1}\left(\vec{x}_{1}\right) \ldots \varnothing_{n}\left(\vec{x}_{m}\right)$ to be normal ordered when all comnihilation operators are to the right while all creation operators are to the left e.g. $H:=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{\vec{p}} a_{\vec{p}}^{\dagger} a_{\vec{p}}$

Example: Cosmological Constant See Tong
Example: Cosimin Effect
Using the mortal ordering prescription E_{0} com be set to $E_{0}=0$. However, in some situations we are interested in meosuhing differences in fluctuations of the nocaum energy. This is the case of the Cosimin Effect

To consider this effect we con consider a massless scalar field $\phi(\vec{x})$ an which we impose the boundary conditions $\varnothing(\vec{x})=\varnothing(\vec{x}+L \hat{x})$. This allows us to ignore the infrared divergence coming from the \hat{x} direction as its size is restricted to L and thus momentum p_{x} is quantized. As gand z are unaffected, energies and other related qualities most be computed pen unit area

We will mow consider the situation in which two parallel planes separated by distance $d \ll L$ in \hat{x} are embedded in the scalar field ϕ such that $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)=0$ where x_{1} and x_{2} ore the locations along \hat{x} of the two planes

Inside the plomes:
The met effect on momentum is the fallowing: $\vec{p}=\left(m \pi / d, p_{y}, p_{z}\right), m \in \mathbb{Z}^{+}$
As we are dealing with a massless scalar field:

$$
\omega_{\vec{p}}=|\vec{p}|=\sqrt{\left(\frac{(\pi \pi}{d}\right)^{2}+p_{\vec{g}}^{2}+p_{\vec{z}}^{2}} \text { and } H=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{\vec{p}}\left[a_{\vec{p}}^{+} a_{\vec{p}}+\frac{1}{2}(2 \pi)^{3} \delta^{3}(0)\right] \longmapsto H=\sum_{m=1}^{\infty} \int \frac{d p_{p} d p_{z}}{(2 \pi)^{2}} \omega_{\vec{p}}\left[a_{\vec{p}}^{+} a_{\vec{p}}+\frac{1}{2}(2 \pi)^{2} \delta^{2}(0)\right]
$$

We ore interested in the nocaumm emengy i.e. $E_{0}(d)=\sum_{m=1}^{\infty} \frac{d p_{0} d p_{z} 1}{(2 \pi)^{2}} ; \omega_{\vec{p}}(m)\left[(2 \pi)^{2} \delta(0)\right]$
As $A=\lim _{l \rightarrow \infty} \int_{-l / 2}^{l / 2} d y d z=\left.\lim _{l \rightarrow \infty} \int_{-l / \varepsilon}^{(/ 2 \vec{p} \cdot \vec{x}}\right|_{\vec{p}=0} d y d z=(2 \pi)^{2} \delta(0)$ we hove $\varepsilon_{0}(d)=E_{0}(d) / A=\sum_{m=1}^{\infty} \int \frac{d p_{l} d p_{z}}{(2 \pi)^{2}} \frac{1}{2} \sqrt{\left(\frac{m \pi}{d}\right)^{2}+p_{g}^{2}+p_{z}^{2}}$

Them:

- Energy inside the planes: $E(d)$
- Energy outside the planes: $E(1-d)$
- Total emengy: $E \cdot E(d)+E(L-d) \Longrightarrow$ If E depends and, nocuum emerge has flactiaations and thus there is a force an the plates (Cosimin Force)

The dependence of E and is impossible to find as E is infinite due to the UV-dinergencxe. However, ane con realise that high momentum/ frequency wines common be reflected by the planes as some ports of the wove would oo through. We focus an completely reflected moves by introducing the uV cutoff wovelemoth a such that a <<d. We ontificially manipulate the integral as fallows:
$\varepsilon_{0}(d)=\sum_{m=1}^{\infty} \int \frac{d p_{d} d p_{1}}{(2 \pi)^{2}} \frac{1}{2} \omega_{\vec{p}}(m) e^{-a \omega_{\vec{p}}(m)}$ so that if $a \rightarrow 0$ we regain the origiond expression bat if $a>0$, the imkgral becomes finite by cutting pp >aid

In order to hove a meomigful result, a should mod oppeon in the final result
Let's consider the case with $1+1$ dimensions instead of $3+1$:

$$
E(d) \longmapsto E(d)=\frac{\pi}{2 d} \sum_{m=1}^{\infty} m
$$

By introducing a we oft: $E(d)=\frac{\pi}{2 d} \sum_{m=1}^{\infty} m e^{-a m \pi / d}=$

$$
\begin{aligned}
& =-\frac{1}{2} \frac{\partial m=1}{\partial a} \sum_{m=1}^{m} e^{-a m n / d}= \\
& =-\frac{1}{2} \frac{\partial}{\partial a} \frac{1}{1-e^{-a n / d}}= \\
& =-\frac{1}{2} \frac{\partial z}{\partial a} \frac{\partial}{\partial z} \frac{1}{1-z}= \\
& =-\frac{1}{2}\left(-\frac{\pi}{d} z\right)\left(-\frac{1}{(1-z)^{2}}\right)= \\
& =-\frac{\pi}{2 d} \frac{z}{(1-z)^{2}} \quad \text { where } z=e^{-a \pi / d}
\end{aligned}
$$

As add <<1, z~1
However $f(z)=\frac{E}{(1-Z)^{2}}$ has a pole of order 2
We thus need to expand using a Laurent series: $f(z)=\sum_{m=-\infty}^{\infty} a_{j}(z-1)^{j} \quad$ where $a_{j}=\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z-1)^{j+1}}{} d z \quad \gamma:|z-1|=1$

Ponticles

As $\left[H, a^{+} \vec{p}\right]=\omega_{p} a_{p}^{+}$and $\left[H, a_{\vec{p}}\right]=-\omega_{\vec{p}} a_{\vec{p}}$ we hove that $|\vec{p}\rangle=a_{\vec{p}}^{+}|0\rangle$ and $H|\vec{p}\rangle=\omega_{\vec{p}}|\vec{p}\rangle$
We com interpret $|\vec{p}\rangle$ as the momentum eigenstate of a single portide of mass m as $E^{2}=\vec{p}^{2}+m^{2}$ (i.e. Relativistic emerge)
\longrightarrow portides ale created by disturbing the nocuum. This effect cowes the opplication of ${a^{+}}_{\vec{p}} \longrightarrow$ type of particle depends am $a_{\dot{p}}^{+}$and thus fields

The momentum \vec{p} (See E-H Tensor) con be turned into an operator as follows:

$$
\begin{aligned}
& \pi(\vec{x})=\int \frac{d^{3} p}{(2 \pi)^{3}}(-i) \sqrt{\frac{\omega_{p}}{2}}\left[a_{\vec{p}} e^{i \vec{p} \cdot \vec{x}}-\vec{a}_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right] \\
& \vec{\nabla} \varnothing(\vec{x})=\int \frac{\int \frac{d \pi p}{(2 \pi)^{3}}}{\left.\frac{d(\sqrt{2}}{2 \omega_{p}}\right)^{-1}}\left[a_{\vec{p}} \vec{p} e^{i \vec{p} \cdot \vec{z}}-\vec{a}_{\vec{p}}^{+} \vec{p} e^{-i \vec{p} \cdot \vec{x}}\right] \\
& \pi(\vec{x}) \vec{\nabla} \phi(y)=\int \frac{d^{3} d^{3} q}{(2)^{3}} \frac{1}{2} \sqrt{\frac{\omega_{\vec{p}}}{\omega_{\vec{q}}}} \vec{q}\left[a_{\vec{p}} a_{\vec{q}} e^{i(\vec{p} \cdot \vec{x}+\vec{q} \cdot \vec{g})}+a_{\vec{p}}^{+} a^{+} \vec{q} e^{-i(\vec{p} \cdot \vec{x}+\vec{q} \cdot \vec{g})}-\left(a_{\vec{p}} a_{\vec{q}}^{+} e^{i(\vec{p} \cdot \vec{x}-\vec{q} \cdot \vec{g})}+a_{\vec{p}}^{+} a_{\vec{q}} e^{-i(\vec{p} \cdot \vec{x}+\vec{q} \cdot \vec{y})}\right)\right] \\
& \vec{p}=-\int d^{3} x \pi(x) \vec{\nabla} \phi(x)=-\frac{1}{2} \int \frac{d^{3} x d^{3} p^{3} q}{(2 \pi)^{6}} \sqrt{\frac{\omega_{\vec{p}}}{\omega_{\vec{q}}}} \vec{q}\left[a_{\vec{p}} a_{\vec{q}} e^{i(\vec{p}+\vec{q}) \cdot \vec{x}}+a_{\vec{p}}^{+} a_{\vec{q}}^{+} e^{-i(\vec{p}+\vec{q}) \cdot \vec{x}}-\left(a_{\vec{p}} a_{\vec{q}}^{+} e^{i(\vec{p} \cdot \vec{q}) \cdot \vec{x}}+a^{+} \vec{p} a_{\vec{q}} e^{-i(\vec{p} \cdot \vec{q}) \cdot \vec{x}}\right)\right]= \\
& =-\frac{1}{2} \int \frac{d^{3} d^{3} q}{(2 \pi)^{3}} \vec{q} \sqrt{\frac{\omega_{\vec{p}}}{\omega_{\vec{q}}}}\left[\left(a_{\vec{p}} a_{\vec{q}}+a_{\vec{p}}^{+} a_{\vec{q}}^{+}\right) \delta(\vec{p}+\vec{q})-\left(a_{\vec{p}} a_{\vec{q}}^{+}+a_{\vec{p}}^{+} a_{\vec{q}}\right) \delta(\vec{p}-\vec{q})\right]= \\
& =\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \vec{p}\left[a_{\vec{p}} a_{-\vec{p}}+a_{\vec{p}}^{+} a_{-\vec{p}}^{+}+a_{\vec{p}} a_{\vec{p}}^{+}+a_{\vec{p}}^{+} a_{\vec{p}}\right]= \\
& =\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}} \vec{p}\left[a_{\vec{p}} a_{-\vec{p}}+a^{+} \vec{p} a_{-\vec{p}}^{+}+(2 \pi)^{3} \delta(0)+2 a^{+} \vec{p} a_{\vec{p}}\right]
\end{aligned}
$$

As $\vec{p}\left(a_{\vec{p}} a_{-\vec{p}}+a^{+} \vec{p} a_{-\vec{p}}^{+}\right)$is ontysimmethage w.r.t $\vec{p} \leftrightarrow-\vec{p}($ ie. . dd $), \int d^{3} \vec{p} \vec{p}\left(a_{\vec{p}} a_{-\vec{p}}+a^{+} \vec{p} a_{-\vec{p}}^{+}\right)=0$
As a result: $\vec{p}=\frac{1}{2} \int d^{3} p \delta(0)+\int \frac{d^{3} p}{(2 \pi)^{3}} \vec{p} a^{+} \vec{p}^{a}-\vec{p}$
Applying to $|0\rangle: \vec{P}|0\rangle=\left[\frac{1}{2} \int d^{3} p \delta(0)\right]|0\rangle$
Them, often mohmol ordering: $\vec{p}=\int \frac{d^{3} p}{(2 \pi)^{3}} \vec{p} a^{+} \vec{p} a \cdot \vec{p}$
Silarly, we com get the angular momentum operation from the EN Tenon:

$$
\begin{aligned}
& \left(\mathcal{J}^{\mu}\right)^{\rho \sigma}=x^{\rho} T^{\mu \sigma}-x^{\sigma} T^{\mu \rho} \\
& J^{i}=Q^{i j}=\int d^{3} x\left(x^{i} T^{0 j}-x^{j} T^{0 i}\right)=\int d^{3} x\left(J^{\rho}\right)^{i j}=\varepsilon^{i j k} \int d^{3} x\left(J^{0}\right)^{j k}
\end{aligned}
$$

Applying the operator \vec{p} an the simone particle states $|\vec{p}\rangle$ we get $\vec{p}|\vec{p}\rangle=\vec{p}|\vec{p}\rangle$ i.e. $|\vec{p}\rangle$ has momentum \vec{p}
Applying the operator J^{i} on $|\vec{p}=0\rangle, J^{i}|\vec{p}=0\rangle=0$ ie. Quantization of scalar field gives rise to particle with internal any amon (Spin) zero

Hulti-Panticle Slates
A multi particle state is a slate created by the action of multiple $a_{\vec{p}_{i}}^{\dagger}$ ie. m-particle state: $\left|\vec{p}_{1}, \ldots, \vec{p}_{\infty}\right\rangle=a^{\dagger} \vec{p}_{i} a^{\dagger} \vec{p}_{m}|0\rangle$ As $\left[a^{+}, a_{\vec{p}}^{+}\right]=0 \forall \vec{p}, \vec{q} \in \mathbb{R}^{3},|\vec{p}, \vec{q}\rangle=|\vec{q}, \vec{p}\rangle$ and the particles are thus (spa ns) bosons (Symmetric w. S. Son $\vec{p}=\vec{q}$)

The Hilbert space related to a scalar field is known as"Fock space" and is spanned by all passible multi-porticle stales i.e. 10$\rangle, a_{\vec{p}}^{+}|0\rangle, a^{\dagger} \vec{p} a_{\vec{q}}^{\dagger}|0\rangle$, The lock spore com be viewed as the sum of all m-particle Hilbert spores $(m \geqslant 0)$ ie. generalisation of Hilbert spore to infinite pontides The number of porticles in any given state is given by the number operator $N=\int \frac{d^{3} p}{(2 \pi)^{3}} a^{+} \vec{p}^{a}$ a which solisfies $N\left|\vec{p}_{1}, \ldots, \vec{p}_{m}\right\rangle=m\left|\vec{p}_{1}, \ldots, \vec{p}_{m}\right\rangle$

The number operation commutes with (free theories) homilltomion ie. $[N, H]=0$ and in free theories particle number is conserved as there are os poleatiads/interccions On the other rand, once intenoctionss ore introduced particles can be cheoted/destrouged

Operator Valued Distribution remember Heisenberg's Uncerhbintg Principle
The particle states $|\vec{p}\rangle$ are momentum eiggonstates but not position eigensstates and thus not localized

This due to the fact that mo momentum or position eigenstate con be mormolized ie. $\langle 0| a \vec{p} a^{\dagger} \vec{p}|0\rangle=\langle\vec{p} \mid \vec{p}\rangle=(2 \pi)^{3} \delta(0)$ ع $\langle 0| \varnothing(\vec{x}) \phi(\vec{x})|0\rangle=\langle\vec{x} \mid \vec{x}\rangle=\delta(0)$ As such, $a_{\vec{p}}$ and $\phi(\vec{x})$ are not good operates an the Pock spore.

We cons construct good, motmolizable states by considering the superposition of multiple $|\vec{p}\rangle$ states ie. The construction of a wove pocket $|\psi(\vec{x})\rangle$ Viewed fromm the print of view of $|\varphi(\vec{x})\rangle$ this is its fourier decomposition in constituting $|\vec{p}\rangle$ states
$|\psi(x)\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}} \psi(\vec{p})|\vec{p}\rangle e^{-i \vec{p} \cdot \vec{x}}$ where $\psi(\vec{p})$ is responsible for the moncondization e.g. $\varphi(\vec{p})=e^{-\vec{p} / 2 m^{2}}$ s.t. $\int \frac{d^{3}}{(2 \pi)^{3}}|\psi(\vec{p})|^{2}=1$

Relaticuislic Normalization
From the noccuem stale $|0\rangle$ we construct the single portide states $|\vec{p}\rangle=a_{\vec{p}}^{+}|0\rangle$
As 10\rangle most he monomolized we hove: $\langle 0 \mid 0\rangle=1$ and $\langle\vec{p} \mid \vec{q}\rangle=(2 \pi)^{3} \delta(\vec{p} \cdot \vec{q})$ which is ∞ when $\vec{p}=\vec{q}$ bat zero dherwise
Why $\langle\vec{p} \mid \vec{q}\rangle=(2 \pi)^{3} \delta(\vec{p}-\vec{q})$?

$$
\left.\left.\langle\vec{p} \mid \vec{q}\rangle=\left\langle a^{+} \vec{p} \mid 0\right\rangle\left|a_{\vec{q}}^{+}\right| 0\right\rangle\right\rangle=\langle 0| a_{\vec{p}} a_{\vec{q}}^{+}|0\rangle=\langle 0| a^{+} \vec{q}^{a_{\vec{p}}}|0\rangle+\left[a_{\vec{p}}, a^{+} \vec{q}\right]\langle 0 \mid 0\rangle=(2 \pi)^{3} \delta(\vec{p} \cdot \vec{q})
$$

Are these mormolization relationships imwoniont?
Momentum Lorentz Tronofohnm: $p^{\mu} \longmapsto\left(p^{\prime}\right)^{\mu}=\lambda^{\mu}{ }_{\nu} p^{\nu}$ s.t. $|\vec{p}\rangle \longmapsto\left|\vec{p}^{\prime}\right\rangle$
Ideally, we hove: $\quad|\vec{p}\rangle \longmapsto\left|\vec{p}^{\prime}\right\rangle=U(\Lambda)|\vec{p}\rangle$ s.t. $\left\langle\vec{p}^{\prime} \mid \vec{p}^{\prime}\right\rangle=\langle U(\Lambda) \vec{p} \mid U(\Lambda) \vec{p}\rangle=\langle\vec{p}| U^{+} U|\vec{p}\rangle=\langle\vec{p} \mid \vec{p}\rangle$
Howerere, if \vec{p}^{\prime} is mot mother.: $|\vec{p}\rangle \longmapsto \lambda\left(\vec{p}, \vec{p}^{\prime}\right)|\vec{p}\rangle \quad$ ie. $\left\langle\lambda \vec{p}^{\prime} \mid \lambda \vec{p}^{\prime}\right\rangle$ meed to be equal to $\langle\vec{p} \mid \vec{p}\rangle$

We wont our momenentuon state bib normalized in any frown ie. we wont $\langle\vec{p} \mid \vec{q}\rangle$ to be Lorentz invariant However, \vec{p} and \vec{q} are 3 -vectors and in general $\delta(\vec{p}-\vec{q}) \neq \delta\left(\vec{p}^{\prime}-\vec{q}^{\prime}\right)$ where $\vec{p}^{\prime}, \vec{q}$ are the transformed 3 -vectors to find a monmolization that is frame imwohiont we consider the (identity) Projection operator:

Scadon (immaniomt) quantity: $\left.\quad 1=\int \frac{d^{3} f}{(21)^{3}}|\vec{p}\rangle\langle\vec{p}| \Longrightarrow|\vec{q}\rangle=\int \frac{\int^{3} p}{(21)^{3}}|\vec{p}\rangle\langle\vec{p}| \vec{q}\right)$
While it is imnoniont as a whole, $d^{3} p$ and $|\vec{p}\rangle\langle\vec{p}|$ are not while $d^{4} p$ and $\delta(0)$ are This the combination $d^{4} p \delta^{(4)}(0)$ must be Lorentz imnariont. It follows that:

Lorene Imo. Int: $\int \frac{d^{4} p}{(a \pi)^{3}} \delta(0)=\int \frac{d^{4} p}{(2 \pi)^{3}} \delta\left(p_{\mu} p^{\mu}-m^{2}\right)=\left.\int \frac{d p^{3}}{(2 \pi)^{3}} d p_{0} \delta\left(p_{0}^{2}-\vec{p}^{2}-m^{2}\right)\right|_{p_{0}>0}=$

$$
=\left.\int \frac{d^{3} p}{(2 \pi)^{3}} d p_{0} \delta\left(p_{0}^{2}-E_{\vec{p}}^{2}\right)\right|_{p_{0}>0}=\int \frac{d_{p}^{3}}{(2 \pi)^{3}} \frac{d p_{0}}{2 p_{0}}\left[\delta\left(p_{0}-E_{\vec{p}}\right)+\left.\delta\left(p_{0}+E_{\vec{p}}\right)\right|_{p_{0}>0}=\int \frac{d^{3} p_{p}}{(2 \pi)^{3}} \frac{1}{2 E \vec{p}}\right] \text { Lorentz Imnoriont }
$$

Note: As $\int d^{3} p \delta\left(\vec{p}(\vec{p})=1\right.$ we hone that $\int \frac{d^{3} p}{2 E \vec{p}} 2 E_{\vec{p}} \delta^{(1)}(\vec{p}-\vec{q})$ is also Lorene imnoniont
Consequence: The Lorentz Imwaniant Dinar Delta function is $2 E_{\vec{p}} \delta(\vec{p}-\vec{q})$ such that the relativistically innariont monmalization is given by $\langle p \mid q\rangle=(2 \pi)^{3}\left(2 E E_{\vec{p}}\right) \delta^{(2)}(\vec{p}-\vec{q})$ where the relativistically monamalized state ore $|p\rangle=\sqrt{2 E \vec{p}}|\vec{p}\rangle=\sqrt{2 E \vec{p}} a_{\vec{p}}^{\dagger}|0\rangle$

Them: $\quad 1=\int \frac{d^{3} p}{(2 \pi)^{3}}|\vec{p}\rangle\langle\vec{p}|=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E}|p\rangle\langle p|$

Camplex Scalar Field

Consider a complex scalan field $\psi(x)$ with Lagrongion demsily $\alpha=\partial_{\mu} \psi^{*} J^{*} \psi-\mu^{2} \psi^{*} \psi$
A complex sacalar feid com be writtem as a limeoon superposition of two red scalar fields ϕ_{1}, ϕ_{2} :

- $\psi(\vec{x})=\left[\phi_{1}(\vec{x})+i \phi_{2}(\vec{x})\right] / \sqrt{2}$

As two ϕ_{i}, two equations of motion
\longrightarrow Treat $\psi(\vec{x}), \psi^{+}(\vec{x})$ sepatately

- $\psi^{\prime}(\vec{x})=\left[\phi_{1}(\vec{x})-i \phi_{2}(\vec{x})\right] / \sqrt{2}$

The equations of molion are:

- $\partial_{\mu} \partial^{\mu} \psi+H^{2} \psi=0$
- $\partial_{\mu} \mu^{\mu} \psi^{*}+H^{2} \psi^{*}=0$

Those reatl imbt the followemg deferitions of the fields and consuogate anomentam:

$$
\begin{array}{rlrl}
\psi & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left(b_{\vec{p}} e^{+i \vec{p} \cdot \vec{x}}+c_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right) & \pi & =\int \frac{d^{3} p}{(2 \pi)^{3}} i \sqrt{\frac{E_{\vec{p}}}{2}}\left(b_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}-c_{\vec{p}} e^{+i \vec{p} \cdot \vec{x}}\right)=\dot{\psi}^{*} \\
\psi^{\dagger}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{p}}}}\left(b_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}+c_{\vec{p}} e^{+i \vec{p} \cdot \vec{x}}\right) & \pi^{\dagger}=\int \frac{d^{3} p}{(2 \pi)^{3}}(-i) \sqrt{\frac{E_{\vec{p}}}{2}}\left(b_{\vec{p}} e^{+i \vec{p} \cdot \vec{x}}-c_{\vec{p}}^{\dagger} e^{-i \vec{p} \cdot \vec{x}}\right)=\dot{\psi}
\end{array}
$$

N. B. As ψ and ψ^{\prime} ate mot real, the fields and mamentium are mot teremition i.e. $b \neq c$

Commutation relationship

$[\psi(\vec{x}), \pi(\vec{y})]=i \delta^{(3)}(\vec{x}-\vec{y}) \quad$ and $\quad\left[\psi(\vec{x}), \pi^{\dagger}(\vec{y})\right]=0$
$[\psi(\vec{x}), \psi(\vec{y})]=\left[\psi(\vec{x}), \psi^{\prime}(\vec{y})\right]=0$
$\left[b_{\vec{p}}, b_{\vec{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{q})$
$\left[c_{\vec{p}}, c_{\vec{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{(3)}(\vec{p}-\vec{q})$
$\left[b_{\vec{p}}, b_{\vec{q}}\right]=\left[c_{\vec{p}}, c_{\vec{q}}\right]=\left[b_{\vec{p}}, c_{\vec{q}}\right]=\left[b_{\vec{p}}, c_{\vec{q}}^{\dagger}\right]=0$

Consequences

The quantisation of complex scalar field gunes nise to two creation opetations b^{\dagger}, c^{\dagger}, ane for evererg scdar field. Eech of those operators correspands to the
 These too porticles ate labeled as porticle and antiportices.

The comsermed chorge: $Q=i \int d^{3} x\left(\dot{\psi}^{*} \psi-\psi^{*} \dot{\psi}\right)=i \int d^{3} x\left(\pi \varphi-\psi^{*} \pi^{+}\right)=\int \frac{\int^{3} p}{(2 \pi)^{3}}\left(c_{\vec{p}}^{\dagger} c \vec{p}-b_{\vec{p}}^{\dagger} b_{\vec{p}}\right)=N_{c}-N_{b} \Longrightarrow$ Comes fram Imtennal Symmetng $N_{c} \equiv$ Number of partictes created bg c^{+}
$\mathrm{N}_{\mathrm{b}}:$ Namber of onli- porticdes created by b^{\dagger}

Heisembeng Picture
In Schrödimgen's picture, operators such as $\phi(\vec{x})$ and $\pi(\vec{x})$ are mot time dependent but the states $|\vec{p}(t)\rangle=e^{-i \vec{E} p t}|\vec{p}\rangle$ are.
It is does mot evident that results dehisced from the Lorentz imvohiont remain ionvohiont often quantisation
However, the Heisenberg picture mokes Lorentz Invonionce moke momijest

Heisenberg Picture
In Heisenberg's Picture, time dependence is assigned to operators and not to the states

Am operator O com be defined Heisenberg's picture (ie. O_{H}) in terms of the Schrödimger's picture operation O_{s} as follows: $O_{n}=e^{i H t} O_{s} e^{-i H t}$

$$
\begin{aligned}
\rightarrow O_{H} & =e^{i H t} O_{S} e^{-i H t} \\
\dot{O}_{H} & =\left[\left(\frac{\partial}{\partial t}+\frac{\partial H}{\partial t} \frac{\partial}{\partial H}\right) e^{i H t}\right] O_{S} e^{-i H t}+e^{i H t}\left[\left(\frac{\partial}{\partial t}+\frac{\partial H}{\partial t} \frac{\partial}{\partial H}\right) O_{S}\right] e^{-i H t}+e^{i H t} O_{s}\left[\left(\frac{\partial}{\partial t}+\frac{\partial H}{\partial t} \frac{\partial}{\partial H}\right) e^{-i H t}\right]= \\
& =i\left(H+\frac{\partial H}{\partial t} t\right) O_{H}+e^{i H t} \frac{\partial O_{S}}{\partial t} e^{-i H t}-i O_{H}\left(H+\frac{\partial H}{\partial t} t\right)=i\left[H, O_{H}\right]+e^{i H t} \frac{\partial O_{S}}{\partial t} e^{-i H t}
\end{aligned}
$$

In QFT, we lift the subscripts S and H in fanon of labeling operators in Schnödinogen's picture by \vec{x} (Position 3-necton) and operations inn Heisenberg's picture by $x^{\mu}=(\vec{x}, t)$ (on simply x) ie. spocetiome position. It follows that:

Schrödimgen: $\phi(\vec{x}) \longmapsto$ Heisenberg: $\varnothing(x)=\varnothing(\vec{x}, t)=e^{i H t} \phi(\vec{x}) e^{-i H t}$
Schrödimgen: $\pi(\vec{x}) \longmapsto$ Heisenberg: $\pi(x)=\pi(\vec{x}, t)=e^{i H t} \pi(\vec{x}) e^{-i H t}$
sit. $\varnothing(\vec{x}, 0)=\varnothing(\vec{x})$
s.t. $\pi(\vec{x}, 0)=\pi(\vec{x})$

Commutation Relations

$$
\left[O_{H}^{(1)}\left(t_{1}\right), O_{H}^{(2)}\left(t_{2}\right)\right]=e^{i H t_{1}} O_{s}^{(1)} e^{-i H H_{1}} e^{i H t_{2}} O_{s}^{(2)} e^{-i H t_{2}}-e^{i H t_{2}} O_{s}^{(2)} e^{-i H t_{2}} e^{i H t_{1}} O_{s}^{(1)} e^{-i H t_{1}}=e^{i H t_{1}} O_{s}^{(1)} e^{i H\left(t_{2}-t_{1}\right)} O_{s}^{(2)} e^{-i H t_{2}}-e^{i H t_{2}} O_{s}^{(2)} e^{i H\left(t_{1}-L_{2}\right)} O_{s}^{(1)} e^{-i H H_{1}}
$$

If $t_{1}=t_{2}:\left[O_{H}^{(1)}(t), O_{s}^{(1)}(t)\right]=e^{i H t}\left[O_{s}^{(1)}, O_{s}^{(2)}\right] e^{-i H t}=\left[O_{s}^{(1)}, O_{s}^{(2)}\right] \Longrightarrow$ Commutator Relations at equivalent times ate the same as in Sch. Picture

Them: $\quad\left[\phi_{a}(\vec{x}, t), \phi_{b}(\vec{y}, t)\right]=\left[\pi_{a}(\vec{x}, t), \pi_{b}(\vec{y}, t)\right]=0 \quad\left[\phi_{a}(\vec{x}, t), \pi_{b}(\vec{y}, t)\right]=i \delta(\vec{x}-\vec{y}) \delta_{b}^{a}$

Evolution of the fields
Consider the scalar field \varnothing and the related Hamiltonian $H=\frac{1}{2} \int d^{3} x\left[\pi^{2}(\vec{x})+(\vec{\nabla} \phi(\vec{x}))^{2}+m^{2} \phi^{2}(\vec{x})\right]$
For such a scalar field we know that the it most satisfy $\partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0$

As $\phi(x)=\varnothing(\bar{x}, t)$ we com now study the time evolution of the fields
By $\dot{O}_{H}=i\left[H, O_{H}\right]$ we know that:

$$
\begin{aligned}
& \dot{\phi}=i[H, \phi]=i H \phi(\vec{x}, t)-i \phi(\vec{x}, t) H=\frac{i}{2} \int d^{3} y\left\{\left[\pi^{2}(y)+(\vec{\nabla} \phi(y))^{2}+m^{2} \phi^{2}(g)\right] \phi(x)-\phi(x)\left[\pi^{2}(y)+(\vec{\nabla} \phi(y))^{2}+m^{2} \phi^{2}(y)\right]\right\}= \\
&=\frac{i}{2} \int d^{3} y\left\{\left[\pi^{2}(y), \phi(x)\right]+\left[(\vec{\nabla} \phi(y))^{2}, \phi(x)\right]+m^{2}\left[\phi^{2}(y), \phi(x)\right]\right\} \\
& \begin{aligned}
\dot{\pi}=i[H, \pi]=i H \pi(\vec{x}, t)-i \pi(\vec{x}, t) H & =\frac{i}{2} \int d^{3} y\left\{\left[\pi^{2}(y)+(\vec{\nabla} \phi(y))^{2}+m^{2} \phi^{2}(g)\right] \pi(x)-\pi(x)\left[\pi^{2}(y)+(\vec{\nabla} \phi(y))^{2}+m^{2} \phi^{2}(y)\right]\right\}= \\
& =\frac{i}{2} \int d^{3} g\left\{\left[\pi^{2}(y), \pi(x)\right]+\left[(\vec{\nabla} \phi(y))^{2}, \pi(x)\right]+m^{2}\left[\phi^{2}(y), \pi(x)\right]\right\}
\end{aligned}
\end{aligned}
$$

Commutators Relations

$$
\begin{aligned}
& {[A B, C]=A[B, C]+[A, C] B \quad\left[A^{2}, B\right]=A[A, B]+[A, B] A} \\
& {\left[(A B)^{2}, C\right]=(A B)[A B, C]+[A B, C](A B)=(A B)[A[B, C]+[A, C] B]+[A[B, C]+[A, C] B](A B)} \\
& {\left[\vec{\nabla}_{y} \phi(g), \phi(x)\right]=\left(\vec{\nabla}_{y} \phi(y)\right) \phi(x)-\phi(x)\left(\vec{\nabla}_{y} \phi_{y}\right)=} \\
& =\vec{\nabla}_{y}(\phi(y) \phi(x)-\phi(x) \phi(y))= \\
& =\vec{\nabla}_{y}[\phi(y), \phi(x)]=0 \\
& {\left[\pi^{2}(y), \phi(x)\right]=\pi(y)[\pi(y), \phi(x)]+[\pi(y), \phi(x)] \pi(y)=-2 i \delta(\vec{x}-\vec{y}) \pi(y)} \\
& {\left[\phi^{2}(y), \phi(x)\right]=\phi(y)[\phi(y), \phi(x)]+[\phi(y), \phi(x)] \phi(y)=0} \\
& {\left[\pi^{2}(g), \pi(x)\right]=\pi(y)[\pi(y), \pi(x)]+[\pi(y), \pi(x)] \pi(g)=0} \\
& {\left[\phi^{2}(y), \pi(x)\right]=\phi(y)[\phi(y), \pi(x)]+[\phi(y), \pi(x)] \phi(y)=2 i \delta(\vec{x}-\vec{y}) \phi(y)} \\
& {\left[\vec{\nabla}_{g} \phi(g), \phi(x)\right]=\vec{\nabla}_{g}[\phi(g), \phi(x)]=0} \\
& {\left[(\vec{\nabla} \phi(y))^{2}, \phi(x)\right]=\left(\overrightarrow{\nabla_{\gamma}} \phi(y)\right)\left[\vec{\nabla}_{\partial} \phi(y), \phi(x)\right]+\left[\left(\overrightarrow{\nabla_{\theta}} \phi(g)\right), \phi(x)\right]\left(\overrightarrow{\nabla_{\gamma}} \phi(y)\right)=0} \\
& {\left[\vec{\nabla}_{g} \phi(g), \pi(x)\right]=\vec{\nabla}_{g}(\phi(g) \pi(x)-\pi(x) \phi(y))=\vec{\nabla}_{g}[\phi(g), \pi(x)]=: \vec{\nabla}_{g} \delta(\vec{x}-\vec{g})} \\
& {\left[\left(\vec{\nabla}_{g} \phi(g)\right)^{2}, \pi(x)\right]=\left(\vec{\nabla}_{g} \phi(g)\right)\left[\vec{\nabla}_{g} \phi(y), \pi(x)\right]+\left[\vec{\nabla}_{g} \phi(y), \pi(x)\right]\left(\vec{\nabla}_{g} \phi(g)\right)=i\left[\left(\vec{\nabla}_{g} \phi(g)\right)\left(\vec{\nabla}_{g} \delta\left(\vec{x}^{\prime}-\vec{g}\right)+\left(\vec{\nabla}_{y} \delta(\vec{x}-\vec{g})\right)\left(\vec{\nabla}_{g} \phi(g)\right)\right]\right.}
\end{aligned}
$$

It follows that:

$$
\begin{aligned}
& \dot{\phi}=i[H, \phi]=i H \phi(\vec{x}, t)-i \phi(\vec{x}, t) H=\frac{i}{2} \int d^{3} y\left\{\left[\pi^{2}(y)+(\vec{\nabla} \phi(y))^{2}+m^{2} \phi^{2}(g)\right] \phi(x)-\phi(x)\left[\pi^{2}(y)+(\vec{\nabla} \phi(y))^{2}+m^{2} \phi^{2}(g)\right]\right\}= \\
&=\frac{i}{2} \int d^{3} y\left\{\left[\pi^{2}(y), \phi(x)\right]+\left[(\vec{\nabla} \phi(y))^{2}, \phi(x)\right]+m^{2}\left[\phi^{2}(y), \phi(x)\right]\right\}= \\
&=\int d^{3} y \delta(\vec{x}-\vec{y}) \pi(y)=\pi(x) \\
& \begin{aligned}
\dot{\pi}=i[H, \pi]=i H \pi(\vec{x}, t)-i \pi(\vec{x}, t) H & =\frac{i}{2} \iint^{3} y\left\{\left[\pi^{2}(y)+(\vec{\nabla} \phi(y))^{2}+m^{2} \phi^{2}(g)\right] \pi(x)-\pi(x)\left[\pi^{2}(y)+(\vec{\nabla} \phi(y))^{2}+m^{2} \phi^{2}(y)\right]\right\}= \\
& =\frac{i}{2} \int d^{3} y\left\{\left[\pi^{2}(y), \pi(x)\right]+\left[(\vec{\nabla} \phi(y))^{2}, \pi(x)\right]+m^{2}\left[\phi^{2}(y), \pi(x)\right]\right\}= \\
& =-\int d^{3} y\left\{\left[\vec{\nabla}_{y} \delta(\vec{x}-\vec{g})\right] \vec{\nabla} g \phi(y)-m^{2} \phi(g) \delta(\vec{x}-\vec{g})\right\}= \\
& =\nabla^{2} \phi(x)-m^{2} \phi=\ddot{\phi}
\end{aligned}
\end{aligned}
$$

This proves that $\pi(x)=\dot{\phi}(x)$ and that $\ddot{\phi}(x)-\nabla^{2} \phi+m^{2} \phi=\partial_{\mu} \partial^{\mu} \phi+m^{2} \phi=0$

Founcen expansion of the field
We know that: $\left[H, a_{\vec{p}}\right]=-E_{\vec{p}} a_{\vec{p}}$ and $\left[H, a_{\vec{p}}^{+}\right]=E_{\vec{p}} a^{\dagger}{ }_{\vec{p}}$
The operations in the Heisenberg Picture are ginem by:

$$
\begin{aligned}
& e^{i H t} a_{\vec{p}} e^{-i H t}=e^{-i E \vec{p} t} a_{\vec{p}} \\
& e^{i H t} a_{\vec{p}}^{+} e^{-i H t}=e^{i E p} a_{\vec{p}}^{+}
\end{aligned}
$$

Mapping $a_{\vec{p}} \longrightarrow e^{-i E_{p} t} a_{\vec{p}}$ and $a_{\vec{p}}^{+} \longrightarrow e^{i \epsilon_{p} t} a_{\vec{p}}^{\dagger}$ in $\phi(\vec{x})$ we gt $\phi(\vec{x}, t)=\int \frac{d_{p}^{p}}{(2 \pi n)} \sqrt{\sqrt{2 E_{\vec{p}}}}\left(a_{\vec{p}} e^{-i p x}+a_{\vec{p}}^{\dagger} e^{i p x}\right)$ where $p x=p_{\mu} x^{\mu}$

NB
In Heisenberg's picture, operators such as $a_{\vec{p}}, a^{+} \vec{p}, \phi(x), \ldots$ hove time dependence \Longrightarrow Tione evolution of $|\vec{p}\rangle$ and $|\vec{x}\rangle$ states is hidden within the operator Therefore, the final states still evolve with time thanks to operators
Time evolutican mast be unitary $\left(\right.$ ie. $|\psi\rangle_{H}=U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle$ sit. $U^{t}\left(t, t_{0}\right) U\left(t, t_{0}\right)=\mathbb{1}$?) such that total probability is conserved

Causality in Heisenberg's Picture
While the field $\Phi(x)$ sotingias the Klum-Gordon equation, there is still some aspects of no lorentz immonionse In fact the fields solis fy equal time commutation relations, we hove no idea about arbitrary spocetiome separations

In order for our theory to be consistent with special relativity it meed to be consol
We thus wont two operabibs bo commute when applied to two events ant causally commectes as ane event should mod affect the aten Two events x^{μ} and y^{μ} ate ant casually conneded if and only if the spoce-tione imtemed $s^{2}=(x-y)^{2}<0$

We thus wont our operators to satisfy the following: $\left[0_{1}(x), O_{2}(y)\right]=0 \quad \forall(x-y)^{2}<0$
E_{1} and E_{2} are causally connected E_{1} and E_{2} are not causally commeded

As our theory most satisfy this, let's check it by computing $[\phi(x), \phi(g)]$

$$
\begin{aligned}
& =\int \frac{d_{p}^{3} d^{3}}{(2 \pi)^{\epsilon}} \frac{1}{2 \sqrt{E \vec{k} \epsilon_{\vec{q}}}}\left\{\left[a_{\vec{p}}, a_{\vec{q}}\right] e^{-i(p x+q p)}+\left[a \vec{p}, a_{\vec{p}}^{+}\right] e^{i(q g-p x)}-\left[a, \vec{q}, a_{\vec{p}}^{+}\right] e^{i(p x-q q)}+\left[a_{\vec{p}}^{+}, a_{\vec{q}}^{+}\right] e^{i(p x+q g)}\right\}= \\
& =\int \frac{\delta^{3} d^{3} \frac{3}{(2 \pi)^{3}}}{\left(\frac{1}{2 \sqrt{E p} E_{\vec{q}}}\right.}\left[e^{i(q y-p x)}-e^{i(p x-q y)}\right] \delta(\vec{p}-\vec{q})= \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}}\left[e^{-i p(x-y)} \cdot e^{i p(x-y)}\right]
\end{aligned}
$$

What are the features of $\Delta(x-y)$?

1) It is Lonemte imnohiont as there is $p(x-y)$ and the imvoniont measure $\int \frac{d^{3}}{2 \in \vec{p}}$
2) Does not vanish for causally connected events
e.g. $x^{\mu}=\left(t_{1}, 0,0,0\right) \quad y^{\mu}=\left(t_{2}, 0,0,0\right)$ s.t. $(x-y)=(t, 0,0,0)$

$$
\Delta(x-y)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 \epsilon \vec{p}}\left(e^{-i \in \vec{p} t}-e^{i \in \vec{p} t}\right)
$$

3) Vomishes for all $(x-y)^{2}<0$ Why?

Our theory is instead Cousol

Propagators
Some limes we are iterested in determinining the propality of finding at location x^{μ} a portide produced at y^{μ} These probability is known as the propagator $D(x-y)$. It com be computed as follows:

$$
\begin{aligned}
& \phi(x) \varnothing(y)=\int \frac{d^{3} p d^{3} g}{(2)^{t}} \frac{1}{2 \sqrt{2} \bar{p} q_{q}}\left\{a_{\vec{p}} a_{\vec{q}} e^{-i(p x \cdot q g)}+a_{\vec{p}} a_{\vec{q}}^{\dagger} e^{i(q y-p x)}+a_{\vec{p}}^{+} a_{\vec{q}} e^{i(p x-q g)}+a^{+} \vec{p} a^{+}{ }^{+} e^{i(p x+q y)}\right\}=
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}} e^{-i p(x-g)}+\int \frac{d^{3} p d^{3}}{(2 \pi)^{3}} \frac{1}{2 \sqrt{E_{p} \varepsilon_{q}}}\left\{a_{\vec{p}} a_{\vec{q}} e^{-i(p x \cdot q g)}+a_{\vec{p}}^{+} a_{\vec{q}} e^{i(p x-q g)}+a^{+} \vec{q} a_{\vec{p}} e^{-i(p x-q p)}+a^{+} \vec{p} a_{\vec{q}}^{+} e^{i(p x+q g)}\right\}
\end{aligned}
$$

The propagation is therefore:

$$
D(x-y)=\langle 0| \phi^{\dagger}(x) \phi(g)|0\rangle=\langle 0| \phi(x) \phi(y)|0\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}} e^{-i p(x-y)}\langle 0 \mid 0\rangle+\int \frac{d^{3} p d^{3} q}{(2 \pi)^{6}} \frac{1}{2 \sqrt{E p_{p} p_{q}}}\langle 0| a^{+} \vec{p} a_{\vec{q}}^{\dagger}|0\rangle e^{i(p x+q g)}=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}} e^{-i p(x-y)}
$$

Consequences of propagator description:
 of a particle produced at x^{μ} to be found at y^{μ}. If separation is spocelike ie. $(x-y)^{2}<0, D(x-y) \sim e^{-m \mid \vec{x}}-\vec{y} \mid$ which means that the probability is expomentidly decreasing but mon-nonishing. How is this passible within a causal throng? While the propagation is mon-nomeshing outside the light come, the commutator $[\phi(x), \phi(g)]=D(x-g)-D(y-x)=0$. This com be imlerpreted as the mons-zero amplitude of the particle travelling from $y \longmapsto x$ canceling the amplitacte of the portide going $x \longmapsto y$, leading to a met zero effect

Similarly, for a complex field: $\left[\psi(x), \psi^{\dagger}(y)\right]=0$ and the particle $x \mapsto y$ comes anti particle going $y \mapsto x$

The Fegmmanam Propagation
Time ordering: Symbolized by T, refers to ordering quantities by plowing all operators enoluated at later times to the left e.g $T \phi(x) \phi(g)=\left\{\begin{array}{l}\phi(x) \phi(y) x^{\circ}>y^{\circ} \\ \varnothing(y) \phi(x) y^{\circ}>x^{\circ}\end{array}\right.$ Fegmmoon Propagator:

$$
\Delta_{F}(x-y)=\langle 0| \tau \phi(x) \phi\left(y|0\rangle= \begin{cases}D(x-y) & x^{0}>y^{0} \\ D(y-x) & y^{\circ}>x^{0}\end{cases}\right.
$$

Claim: Fegmmam Propagator com be written as: $\Delta_{f}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}} e^{-i p(x-y)}$
Proof:
We hove to show that, by imlegrationg over p^{0}, we recover $D(x-y), D(y-x)$

As $p^{2}-m^{2}=\left(p^{0}\right)^{2}-\vec{p}^{2}-m^{2}=\left(p^{0}\right)^{2}-\left(E_{\vec{p}}\right)^{2}=\left(p^{0}-E_{\vec{p}}\right)\left(p^{0}+E_{\vec{p}}\right)$, the integrand has $1^{\text {st order }}$ pole at $p^{0}= \pm E_{\vec{p}}$
In addition, for $f(p)=\left(p^{2}-m^{2}\right)^{-1} e^{-i p(x-g)}$ we hove: $f(p)=\left(p^{0}-E_{\vec{p}}\right)^{-1}\left(p^{0}+E_{\vec{p}}\right)^{-1} e^{-i p^{0}\left(x^{0}-y^{0}\right)+i \vec{p} \cdot(\vec{x}-\vec{y})}$

$$
\begin{aligned}
& -\lim _{p_{0} \rightarrow \text { id }} f(p)=0 \text { if } x^{0}<y^{0} \\
& -\lim _{p \rightarrow \rightarrow i \infty} f(p)=0 \\
& \text { if } x^{0}>y^{\circ}
\end{aligned}
$$

We com the apply the residue theorem: $\oint_{\Gamma} f(z) d z= \pm 2 \pi i \sum_{k=1}^{N} \operatorname{Res}\left(f_{1} z_{k}\right) \quad+i f$ coumlen clockovie, - for counter dockuise
The $\operatorname{Res}\left(f, z_{k}\right)=\frac{1}{(m-1)!} \lim _{z \rightarrow z_{k}} \frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{k}\right)^{m} f(z)\right) \quad$ where m is the olden of the pole
It follows that:

$$
\begin{aligned}
& \text { - } \operatorname{Res}\left(f_{1}+E_{\vec{p}}\right)=\lim _{z \rightarrow E \vec{p}}\left(\left(z-E_{\vec{p}}\right) f(z)\right)=\lim _{p_{p} \rightarrow E_{\vec{p}}} \frac{i}{\left(p^{0}+E_{\vec{p}}\right)} e^{-i p^{0}\left(x^{0}-y^{0}\right)+i \vec{p} \cdot(\vec{x}-\vec{y})}=\frac{i}{2 E_{\vec{p}}} e^{-i E \vec{p}\left(x^{0}-y^{0}\right)+i \vec{p} \cdot(\vec{x}-\vec{y})} \\
& \text { - } \operatorname{Res}\left(f_{1}-E_{\vec{p}}\right)=\lim _{z \rightarrow E \vec{p}}\left(\left(z+E_{\vec{p}}\right) f(z)\right)=\lim _{p_{0} \rightarrow-E_{\vec{p}}} \frac{i}{\left(p^{0} \cdot E_{\vec{p}}\right)} e^{-i p^{0}\left(x^{0}-y^{0}\right)+i \vec{p} \cdot(\vec{x}-\vec{y})}=-\frac{i}{2 E_{\vec{p}}} e^{-i E_{\vec{p}}\left(y^{0}-x^{0}\right)+i(\vec{p}) \cdot(\vec{y}-\vec{x})}
\end{aligned}
$$

Them we hove:

$$
\begin{array}{ll}
\text { - } \Delta_{f}(x-g)=\int \frac{d^{3} p}{\left.(2 \pi)^{3}\right)^{1}} \frac{1}{2 E_{p}} e^{-i p(x-y)} & \text { with } p^{0}=E_{\vec{p}} \text { if } x^{0}>y^{0} \\
\text { - } \Delta_{F}(x-y)=\int \frac{d^{3} p}{(2 \pi)^{3} p^{2}} \frac{1}{2 E_{\vec{p}}} e^{-i p(g-x)} & \text { with } p^{0}=E_{\vec{p}} \text { if } y^{0}>x^{0}
\end{array}
$$

Green's Functions

Applying the Kleim-Gordon Equation to the Feymmom Propagator we oft:
$\left(\partial_{t}^{2}-\nabla^{2}+m^{2}\right) \Delta_{F}(x-y)=\int \frac{d^{4} p}{(9 \pi)^{4}} \frac{m^{2}-p^{2}}{p^{2}-m^{2}} e^{-i p(x-y)}=-i \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p(x-y)}=-i \delta(x-y)$ irrespective of combiour

If we choose different combers:

Retorted Green Function

Abvonsed Green Function

Retorted Green Function: $\Delta_{R}(x-y)=\left\{\begin{array}{cc}D(x-y)-D(y-x) & x^{0}>y^{0} \\ 0 & y^{\circ}>x^{0}\end{array}\right.$
Advanced Green Function: $\Delta_{A}(x-y)=\left\{\begin{array}{cc}0 & y^{\circ}<x^{0} \\ D(x-g)-D(g-x) & y^{\circ}>x^{\circ}\end{array}\right.$
$\Delta_{R}(x-g)$ and $\Delta_{A}(x-g)$ ate wed to solve the imbomogemeaus $k G$ equation $\partial_{\mu} \mu^{\mu} \phi+m^{2} \phi=\delta(x)$ is a source term Δ_{R} is used if we know the initial field config. and we want to find whet it endures into Δ_{A} is known if we know the end point of the field and we wont to find where it come from

Nom-Relaticisistic Fields
Consider the complex scalar fields $\psi(\vec{x}, t)$ and $\psi^{*}(\vec{x}, t)$ with Lagrangian density $\mathcal{L}=\partial_{\mu} \psi^{*} J^{\mu} \psi-m^{2} \psi^{*} \psi$
There satisfy the Kleim-Gondon equation:

$$
\begin{aligned}
& -\partial_{\mu} \partial^{\mu} \psi+m^{2} \psi=0 \\
& \cdot \partial_{\mu} \partial^{\mu} \psi^{*}+m^{2} \psi^{*}=0
\end{aligned}
$$

We con decompose the field int: $\psi(\vec{x}, t)=e^{-i m t} \tilde{\psi}(\vec{x}, t)$ and $\psi^{*}(\vec{x}, t)=e^{t i(m) t} \tilde{\psi}^{*}(\vec{x}, t)$
The KG equation tarns into: $\partial_{t}^{2} \varphi-\nabla^{2} \psi+m^{2} \varphi=\partial_{t}\left(-i m e^{-i m h t} \tilde{\psi}+e^{-i m t} \dot{\tilde{\psi}}\right)-e^{-i m t} \nabla^{2} \tilde{\psi}+e^{-i m m} m^{2} \tilde{\psi}=$

$$
\begin{aligned}
& =-m^{2} e^{-i m t} \tilde{\psi}-i m e^{-i m t} \dot{\tilde{\psi}}-i m e^{-i m k t} \tilde{\tilde{\psi}}+e^{-i m \mathrm{~m} t} \tilde{\tilde{\psi}}-e^{-i m \mathrm{~m} t} \nabla^{2} \tilde{\psi}+e^{-i \mathrm{cmt}} m^{2} \tilde{\psi}= \\
& =e^{-i m t t}\left(\tilde{\tilde{\psi}}-2 i m \dot{\tilde{\psi}}-\nabla^{2} \tilde{\psi}\right)=0
\end{aligned}
$$

Apply to the Lagrangian Density: $\mathcal{L}=\partial_{\mu} \psi \partial^{\mu} \psi^{*}-m^{2} \psi^{*} \psi=\dot{\psi}^{*} \dot{\psi}-\vec{\nabla} \psi^{*} \vec{\nabla} \psi-m^{2} \psi^{*} \psi=$

$$
\begin{aligned}
& =\left(i m e^{i m t} \tilde{\psi}^{*}+e^{i m t} \dot{\psi^{*}}\right)\left(-i m e^{-i m t} \tilde{\psi}+e^{-i m m^{\prime}} \dot{\tilde{\psi}}\right)-\vec{\nabla} \tilde{\varphi}^{t} \vec{\nabla} \tilde{\psi}-m^{2} \tilde{\psi}^{\prime} \tilde{\psi^{2}}= \\
& =m^{2} \tilde{\varphi}^{*} \tilde{\psi}+i m \tilde{\psi}^{+} \dot{\tilde{\psi}}-i m \dot{\tilde{\psi}}^{+} \tilde{\psi}+\dot{\tilde{\psi}}^{+} \dot{\tilde{\psi}}-\vec{\nabla} \tilde{\psi}^{x} \vec{\nabla} \tilde{\psi}-m^{2} \tilde{\psi}^{+} \tilde{\varphi}= \\
& =i m\left(\tilde{\psi}^{*} \dot{\tilde{\psi}}-\dot{\tilde{\psi}}^{*} \tilde{\psi}\right)-\vec{\nabla} \tilde{\psi}^{*} \vec{\nabla} \tilde{\varphi}
\end{aligned}
$$

$$
|\vec{p}| \ll m \longmapsto \dot{\psi} \ll m \psi \quad \text { s.t. } \mathcal{L} i \tilde{\psi}^{*} \dot{\tilde{\psi}}-\frac{1}{2 m} \vec{\nabla} \tilde{\psi}^{*} \vec{\nabla} \psi
$$

The first order lagromgion is sygmemethag w.r.t. intenomal thonsformations of the kind: $\psi \longmapsto e^{i \alpha} \psi$
The corresponding current is: $j^{\mu}=\left(-\psi^{*} \psi, \frac{i}{2 m}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)\right)$
What about the Homillomiam:

It follows that: $H=\varphi \pi-\mathcal{L}=\frac{1}{2 m} \vec{\nabla} \tilde{\psi}^{*} \vec{\nabla} \tilde{\psi}$
b quantize the Hamiltonian we impose the following relations: $[\psi(\vec{x}), \psi(\vec{y})]=\left[\psi^{\dagger}(\vec{x}), \psi^{\dagger}(\vec{y})\right]=0$ and $\left[\psi(\vec{x}), \psi^{\dagger}(\vec{y})\right]=\delta^{(3)}(\vec{x}-\vec{y})$ (Sch. Picture)

As this is a 1^{*} order Lagrangian, ψ has just one solution of the form $\psi(\vec{x})=A e^{i \vec{p} \cdot \vec{x}}$
The farrier expansion is $\psi(\vec{x})=\int \frac{b^{3} p}{(2 n)^{2}} a^{a} e^{i p} \cdot \vec{x}$ and commonatation relation $\left[a \vec{p}, a^{+} \vec{q}\right]=(2 p)^{3} \delta(\vec{p} \cdot \vec{q})$
By Plugging in the Fourier Transform m and using commutation relations we get: $\left.H_{\mid \vec{p}}\right\rangle=\frac{\vec{p}^{2}}{2 m}|\vec{p}\rangle$

Thus, quantiziang the $1^{\text {st order lagrangian leads to: }}$

- 1 single type of potiche \Longrightarrow Amti-ponticles ore consequence of relativity
- The conserved chaney $Q=\int d^{3} x \psi^{\dagger} \psi$ is the pontide number and remains consumed for imbiroctions
- No mon-relativistic limit of red solar field as particles ore their cum ontiportides

Reconvermeng QM
In QH: \vec{x} and \vec{P} are operators
In QFT: Only \vec{P} is an operation (\vec{X} is mot tolled about as single particle states are only localized in momentum space bat mot in position space)

In the man-relatinistic limit:
Operator $\psi^{\dagger}(\vec{x})=\int \frac{d^{\beta} p}{(2 \pi)^{3}} a^{\dagger} \vec{p} e^{-i \vec{p} \cdot \vec{x}}$ an nocmum $\left.\psi^{\dagger}(\vec{x})|0\rangle=\int \frac{d^{3} p}{(2 \pi)^{3}} a^{+} \vec{p} 10\right\rangle \left. e^{-i \vec{p} \cdot \vec{x}}=\int \frac{d^{3} p}{(2 \pi)^{3}} \right\rvert\, \vec{p}>e^{-i \vec{p} \cdot \vec{x}}$
By wore pocket interpretation this com be interpreted as a particle state localised at position $|\vec{x}\rangle$
It ado follows that the position operator $\vec{x}=\int d^{3} x \vec{x} \psi^{\top}(\vec{x}) \psi(\vec{x})$ s.t. $\vec{x}|\vec{x}\rangle=\vec{x}|\vec{x}\rangle$

Let's mow comshnact the Schrodimgen's conovefanction by superiamporing ane poticle states i.e $|\varphi\rangle=\int d^{3} x \varphi(\vec{x})|\vec{x}\rangle$
It gollous that: $x^{i}|\varphi\rangle=\int^{3} x x^{i} \varphi(\vec{x}|\vec{x}\rangle$
What about mamentium? The operaton is $\vec{p}=\int \frac{\int^{\beta} p}{(21) p} \vec{p}^{+} \vec{p}^{+} a \vec{p}$

$$
\begin{aligned}
& =\int d^{\overrightarrow{3} x} \frac{d^{\vec{\beta} p}}{((2 n)\rangle} \vec{p} a^{+} \vec{p} e^{-i \vec{p} \vec{x}} \varphi(\vec{x})|0\rangle= \\
& =i \frac{d^{3} x{ }^{3} p}{(2 \pi)^{3}} a^{+} \vec{p}_{\vec{p}} \vec{\nabla}\left(e^{-i \vec{p} \vec{x}}\right) \varphi(\vec{x})|0\rangle= \\
& =i \int \frac{d^{3} x{ }^{\beta}}{\left.(e n)^{3}\right)}\left[\vec{\nabla}\left(e^{-i \vec{p} \cdot \vec{x})} \varphi(\vec{x})\right] a_{p}^{+}|0\rangle=\right. \\
& =i \int \frac{\int^{3} \times d^{3} p}{(2 \pi)^{3}}\left[\vec{\nabla}\left[e^{-i \vec{p} \vec{x}} \varphi(\vec{z}) a_{\vec{p}}^{+}|0\rangle\right]-\vec{\nabla}(g(\vec{z})) e^{-i \vec{p} \cdot \overrightarrow{\vec{x}}} a_{\vec{p}}^{+}\right\}(10)= \\
& \left.\left.\left.=-i \int \frac{\beta^{3} x{ }^{3} p}{(2 \pi)^{3}} \vec{\nabla}(g(\vec{x})) \right\rvert\, \vec{p}\right) e^{-i \vec{p} \cdot \vec{z}}=\int d^{3} x[-i \vec{i}(\varphi(\vec{x}))] \mid \vec{x}\right)
\end{aligned}
$$

Therefore, the pasition and maxmentium operabions act an single portide stabes jut tile they do in all and have $\left[x^{j}, p^{k}\right]=i \delta^{j k}|\varphi\rangle$
Im addition:

Them $H|\varphi\rangle=\int \frac{d^{3} x \beta^{3} p}{(2 n)^{\vec{p}}} \frac{\vec{p}^{2}}{2 m} \alpha_{\vec{p}}^{t} a_{\vec{p}} \varphi(\vec{x})|\vec{x}\rangle=$
$\iint_{\text {Similar }}$ to $\vec{P}_{\text {deteination }}$

$$
=-\frac{1}{2 m} \int d^{3} x\left(\nabla^{2} \varphi(\vec{x})\right)|\vec{x}\rangle
$$

$: \frac{\partial \mid l \varphi}{\partial t}=$

Summarag and Coansequemes
The complex saalar fiedd Lagrongian Density is givem by: $\alpha \cdot \partial_{\mu} \psi^{*} \partial_{\mu} \psi-\mathrm{m}^{2} \psi^{*} \psi$
The field satiofyg the $k G$ equalions: $\partial_{\mu} \partial^{\mu} \psi+\mathrm{m}^{2} \varphi=0$ and $\partial_{\mu} \partial^{\text {a }} \psi^{*}+\mathrm{m}^{2} \psi$ We are free to decocmpose fellds howvern we want to e.g. $\varphi=e^{-i m m} \tilde{\varphi}, \psi^{\psi}=e^{\text {iemt }} \tilde{\psi}^{*}$

These are finst orker Lagrangian ond differenticid equations
fromem this logonongion it gollows that:

- Canjuagte mman.: $\pi=\partial \alpha / \partial \dot{\varphi}=i \psi^{\dagger}$ and $H=\left(2(2 m)^{-1} \nabla \psi^{*} \nabla \psi\right.$

$\sqcup|\vec{p}\rangle=\alpha^{+}|10\rangle$ and $a p|0\rangle=0$

 for red scolar fielde os in that cose potide is its cum artipotide.

In mon relativisistic liment:
Position locolised porticle state $|\vec{x}\rangle$ created as wovepocket i.e. $\left.|\vec{x}\rangle=\psi^{\dagger}(\vec{x}) 10\right\rangle$ where $\psi^{\dagger}(\vec{x})=\int^{\left.\frac{d^{3} p}{(2 n 1)}\right)^{\dagger} a^{\dagger} \overrightarrow{e^{-i \vec{p}}} \cdot \vec{x}}$
As $|\vec{x}\rangle=\psi^{\dagger}(\vec{x})|0\rangle$ and $|\vec{p}\rangle=a^{\dagger} \vec{p}|0\rangle$ we hove

- Pasitican operator: $\quad \vec{x}=\int d^{3} x \vec{x} \psi^{\dagger}(\vec{x}) \psi(\vec{x})$
- Momentuam operabor: $\vec{p}=\int \frac{d^{3} p}{(2 \pi i)} \vec{p}^{+} a_{\vec{p}} a_{\vec{p}}$

We con define the Sch. Wonefunction as $|\varphi\rangle=\int d^{3} x \varphi(\vec{x})|\vec{x}\rangle$ where $\int|\varphi(x)|^{2} d^{3} x=1$ We con thas show that:

$$
\left.\begin{array}{l}
x^{i}|\varphi\rangle=\int d^{3} x\left(x^{i}\right) \varphi(\vec{x})|\vec{x}\rangle \\
p^{i}|\varphi\rangle=\int d^{3} x\left(-i \frac{\partial}{\partial x^{i}} \varphi(\vec{x})\right)|\vec{x}\rangle
\end{array}\right\}\left[x^{j}, p^{k}\right]=i \delta^{j k} \quad \text { Quontam Hechomics!! }
$$

Similanly: $\left.\left.H|\varphi\rangle=-\frac{1}{2 m} \int d^{3} x\left[\nabla^{2} \varphi(x)\right] \right\rvert\, \vec{x}\right)$
From which follows: $i \frac{\partial \varphi}{\partial t}=-\frac{1}{2 m} \nabla^{2} \varphi$ i.e. Sch.Equation but this tione with probabidity intenpretation

$$
\text { Why } Q=\int d^{3} x|\varphi(\vec{x})|^{2}
$$

Interacting Fields
Imereractions
Often particles move in some fixed background potential $V(\vec{x})$
The addition to the Lagrangian Density is of the form $\Delta \mathcal{L}=-V(\vec{x}) \psi^{*} \psi$

If we hove a system of m-portides ($m \geqslant 2$) we expect to hove interactions between porticides
The additions the lagrangian is of the foramen: $\Delta \mathcal{L}=\psi^{*}(\vec{x}) \psi^{*}(\vec{x}) \psi(\vec{x}) \psi(\vec{x})$
This corresponds to the ammibilation of two particles and the creation of tao dither particles

Small and Big Interactions
Not all interactions are days relevenont: some are more important at low energy while others ate andre important at hight energies For example, consider the read scalar field Lagrangian Density: $\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi d^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\sum_{m 33} \frac{\lambda_{m}}{m!} \phi^{m}$

The λ_{m} poramemelens are called "coupling constant"
As \mathcal{L} has units $[\mathcal{L}]=4$ (ie. emenggy) and $[\varnothing]=1$ we hove that $\left[\lambda_{m}\right]=4-m$
Cleanly, the hehovioun of each interaction scales differently with emerge

We are interested in smonoll perturbations:
If we define E as the emerge scale of the interaction we get 3 types of interaction based on their coupling constants λ_{m}

- Relenomt ie. $\left[\lambda_{3}\right]=1$

These tennos ore dimenssioneless for λ_{3} / E which means that at emerges $E>\lambda_{3}$ are netty small perturbations (compared to dither terms of the lagrangian) while are big perhianbations for $\lambda_{3} \ll E$

- Mongimal ie. $\left[\lambda_{q}\right]=0$

These ore dimenensioneless and thus small if $\lambda_{4} \ll 1$

- Irrelevant i.e. $\left[\lambda_{m}\right]<0$ if $m \geqslant 5$

Dimensionless phonometer is $\lambda_{\infty} E^{m-4}$, which is small at low energies and high at high energies
N.B. Suppose we find a TOE that describes evenghthing at the emerges sade Λ. However, we are intreroted in sade $E \ll \Lambda$ We cam write $\lambda_{m}=g_{m} \Lambda^{4-m}$ where $g_{m} \sim \theta(1)$. Therefore, as $(E / \Lambda)^{m-4} \lll 1$ for $m>4$, these ate heavily supprased

Interaction Picture

Schrodingorer Picture:

- States depend an time $i \frac{d|\psi\rangle_{s}}{d t}=H|\psi\rangle_{s}$
- Operators are ticime indepenatent

Heisembergis Picture:

- States are fixed $|\psi\rangle_{H}=e^{i H t} \mid \psi_{s}$ s.t.

$$
i \frac{d|\psi\rangle_{s}}{d t}=H e^{-i H t}|\psi\rangle_{n}+i e^{-i H t} \frac{d|\varphi\rangle_{n}}{d t}=H e^{-i H t|\psi\rangle_{n}} \Longrightarrow-i \frac{d|\psi\rangle_{n}}{d t}=0
$$

- Operations are ticame-dependent $O_{n}(t)=e^{i H t} O_{S} e^{-i H t}$

Consequeme of Interaction Picture

$$
\begin{aligned}
& H=H_{0}+H_{\text {int }} \Longrightarrow i|\dot{\psi}\rangle_{S}=H_{0}|\psi\rangle_{S}+H_{\text {int }}|\psi\rangle_{S} \\
& \text { If }|\psi\rangle_{S}=e^{-i H_{0} t}|\psi\rangle_{I} \Longrightarrow|\dot{\psi}\rangle_{I}=e^{i H_{0} t} H_{\text {ion }} e^{-i H_{0} t}|\psi\rangle_{I}=H_{I}|\psi\rangle_{I}
\end{aligned}
$$

Therefore, ion Interaction Picture, we hove:

- Hamillomion: $H=H_{0}+H_{\text {int }}$
- States: $\quad \mid \psi(t))_{I}=e^{i H_{b} t}|\varphi(t)\rangle_{s}$
- Operators: $\quad O_{I}(t)=e^{i H_{0} t} O_{S} e^{-i H_{0} t}$ s.t. $H_{I}=e^{i H_{0} t} H_{\text {met }} e^{-i H_{0} t}$
- Sch. Equdian: $i|\dot{\psi}\rangle_{I}=H_{I}|\psi\rangle_{I}$

Time endution of states in Interaction Picture
States evolve occonding to an operator $U\left(t, t_{0}\right)$ sit. $|\psi(t)\rangle_{\mathrm{I}}=U\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle$
What are the properties of this operator?

1) As probability is consemed, $U\left(t, t_{0}\right)$ is uniting ie. $U^{\dagger}\left(t, t_{0}\right) U\left(t, t_{0}\right)=1$

$$
\langle\psi(t) \mid \psi(t)\rangle=\left\langle\psi\left(t_{0}\right)\right| U^{\dagger}\left(t, t_{0}\right) U\left(t_{0}, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle=\left\langle\psi\left(t_{0}\right) \mid \psi\left(t_{0}\right)\right\rangle=1 \text { ifs } U^{\dagger}\left(t, t_{0}\right) U\left(t, t_{0}\right)=1
$$

2) Endulicon $t_{0} \rightarrow t_{1} \rightarrow t$ anus be equal $t_{0} t_{0} \rightarrow t$ ie. $U\left(t, t_{0}\right)=U\left(t, t_{1}\right) U\left(t_{1}, t_{0}\right)$

$$
|\psi(t)\rangle=U\left(t, t_{4}\right)\left|\psi\left(t_{4}\right)\right\rangle=U\left(t, t_{4}\right) U\left(t_{1}, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle=U\left(t, t_{0}\right)
$$

3) No time evolution leones state imnahiont i.e. $U(t, t)=1$

What is the form on of such am operator?
Sch equation in Int. Pic.: $i\left|\dot{\varphi_{1}}\right\rangle_{1}=i \dot{U}\left(t, t_{0}\right)\left|\varphi\left(t_{0}\right)\right\rangle_{1}=H_{1} v\left(t_{1}, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle_{1}$
Therefore: $U\left(t, t_{0}\right)=T \exp \left[-i \int_{t_{0}}^{\left.H_{1}\left(t^{\prime}\right) d t^{\prime}\right] \quad \text { Dy rom's Formula }}\right.$ where $T O_{1}\left(t_{1}\right) O_{2}\left(t_{2}\right)= \begin{cases}O_{1}\left(t_{1}\right) O_{2}\left(t_{2}\right) & \text { if } t_{1}>t_{2} \\ O_{2}\left(t_{2}\right) O_{1}\left(t_{1}\right) & \text { if } t_{2} t_{1}\end{cases}$
Why do we meed the time ordered solution?
Excluding lime ordering we have: $U\left(t, t_{0}\right)=\exp \left[-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right]=1-i \int_{t_{0}}^{t} H_{1}\left(t^{\prime}\right) d t^{\prime}-\frac{1}{2}\left[\int_{t_{0}}^{t} H_{2}\left(t^{\prime}\right) d t^{\prime}\right]^{2}+\ldots$
Toking lime derivative:

$$
\begin{aligned}
\dot{U}\left(t, t_{0}\right) & =-i H_{I}(t)-\frac{1}{2}\left\{\left[\int_{t_{0}}^{t} H_{I}\left(t^{\prime}\right) d t^{\prime}\right] H_{I}(t)+H_{I}(t)\left[\int_{t_{0}}^{t} H_{I}\left(t^{\prime}\right) d d^{\prime}\right]\right\}+\ldots= \\
& =-i H_{I}(t)-H_{I}(t)\left[\int_{t_{0}}^{t} H_{I}\left(t^{\prime}\right) d d^{\prime}\right]-\frac{1}{2} \int_{t_{0}}^{t}\left[H_{I}\left(t^{\prime}\right), H_{I}(t)\right] d t^{\prime}+\ldots
\end{aligned}
$$

If $\left[H\left(t^{\prime}\right), H(t)\right]=0 \quad \forall t^{\prime}, t$ we would have: $i \dot{U}\left(t, t_{0}\right)=H_{I}(t)\left[1-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}+\ldots\right]=H_{1}(t) U\left(t, t_{0}\right) \quad$ Satisfies Sch. Eq. However, as $\left[H_{T}\left(k^{\prime}\right), H_{I}(t)\right] \neq 0$. Sch. equation is mot satisfied because of ordering issues

Claim: The tome evolution operator is given by Dysomis Formula: $V\left(t, t_{0}\right)=T \exp \left[-i \int_{t_{0}}^{t} H^{t}\left(t^{r}\right) d t^{\prime}\right]$ Expansion of Dyson's Formula: $U\left(t, t_{0}\right)=1-i \int_{t_{0}}^{t} d t^{\prime} H_{1}\left(t^{\prime}\right)+(-i)^{2} \int_{t_{0}}^{k} d t^{\prime} \int_{t_{0}}^{t^{\prime}} d t^{\prime \prime} H_{1}\left(t^{\prime}\right) H_{1}\left(t^{\prime}\right)+\ldots$

Proof: As t is the latest tone we hove:

$$
i \frac{d}{d t} U\left(t, t_{0}\right)=i \frac{d}{d t} \operatorname{Texp}\left[-i \int_{t_{0}}^{t^{t}} d t^{\prime} H_{1}\left(t^{\prime}\right)\right]=T i \frac{d}{d t} \exp \left[-i \int_{t_{0}}^{t} d t^{\prime} H_{1}\left(t^{\prime}\right)\right]=T H_{1}(t) \exp \left[-i \int_{t_{0}}^{t} H_{1}\left(t^{\prime}\right) d t^{\prime}\right]=H_{1}(t) U\left(t, t_{0}\right)
$$

Examples of Intierocicons

1) ϕ^{4} Theory: $\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4} \phi^{4}$ with $\lambda \ll 1$

By expounding ϕ^{4} we will see the following terms: $\left.\left(a_{\vec{p}}^{\dagger}\right)^{4},\left(a^{+}\right)^{3}\right)_{\vec{p}}$, etc.
These create and destroy particles \longrightarrow Particle number int conserved
2) Scalar Yakama Theory: $\alpha=\partial_{\mu} \psi^{*} \partial^{\mu} \psi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\mu^{2} \psi^{*} \psi-\frac{1}{2} m^{2} \phi^{2}-g \psi^{*} \psi \phi=\mathcal{L}_{\psi}+\mathcal{L}_{\phi}-g \psi^{*} \psi \phi$ with $g \ll H, m$
 phase notation of ψ leading a conserved change Q ie. difference between the number of ψ and anti- ψ (ie. $\bar{\psi}$) particles is constant

N.B. Local minimum at $\phi=\varphi=0$ but unbounded from below for large -g ϕ

Scattering
The interaction Homilltomiam $H_{\text {int }}$ com be denied from \mathcal{L} by computation of J int
$\mathcal{H}_{\text {int }}$ will contain several different fields, exch ane with a specific set of operators
As $H_{i n t}$ will affect $U\left(t, t_{0}\right)$ (See Dyson's Formula) the different combinations of operators in the exponsion will show different types of reaction

Example: Scalar Yukawa Potential
Imteroction Hamillomiam: $\quad H_{\text {int }}=g \int d^{3} x \psi^{\dagger} \psi \phi$
Fields:

- $\phi \sim a+a^{+} \Longrightarrow$ Com create and destroy ϕ-particles ie. mesons
- $\psi \sim b+c^{+} \Longrightarrow$ Cam create $\bar{\psi}$ and destroy ψ particles i.e. Sehmonions e.g. Nucleons $] Q=N_{c} \cdot N_{b}=$ canst.
- $\psi^{\dagger} \sim b^{\dagger}+c \Longrightarrow$ Com create ψ and destroy $\bar{\psi}$ particles

First Olden Interaction: $c^{+} b^{+} a$ and $a^{+} c b$

Second Order Interaction: $\left(c^{+} b^{\dagger} a\right)\left(c b a^{\dagger}\right)$

Amplitudes of interactions
Initial State: $1 i\rangle$ at time t.
Final State: $|f\rangle$ at time t_{+}

Assumption: Assume the state $l i\rangle$ at $t \rightarrow-\infty$ and the state $|f\rangle$ at $t_{t} \rightarrow+\infty$ to be cigenstates of the "Free Hamiltonian" H_{0}
The assumption is based om the idea that, phish to the interaction, the state lis is formed by a set of mom imbtenoctiong particles that are eiogemstates of H_{0}. They them approach exch other and interact briefly. The particles the mons away from each other, fornoming a anew mons-ienteroctiong state In addition, the li) and If> states ate expected to commune with iandinoidual number operations N, which commutes with H_{0} but ant $H_{i n t}$
N.B.:

- Assumption does mot hold for bound states e.g. $e^{-}+p \longrightarrow H$ imfenoction continues in ifs
- In QFT a pontide is mennen truly alone due to mong (Nintial) excitations of nocuum
Scaltenimg (s) - Matrix

Amplitude: $A=\lim _{t_{t} \rightarrow \pm \infty}\langle f| U\left(t_{t}, t.\right)|i\rangle=\langle f| s|i\rangle$

Example: Meson Decays

$$
\left[b_{\vec{p}}, b_{\vec{q}}^{+}\right]=b_{\vec{p}} b_{\vec{q}}^{+}-b_{\vec{q}}^{+} b_{\vec{p}}=(2 \pi)^{3} \delta(\vec{p}-\vec{q}
$$

Consider the interaction: $b^{+} c^{+} a \quad$ (1 $1^{\text {st }}$ Order Int)
Initial State: $|i\rangle=\sqrt{2 E_{\vec{p}}} a_{\vec{p}}^{+}|0\rangle$
Final State: $\left|\xi_{\rangle}\right\rangle=\sqrt{4 E_{\vec{q}_{1}} E_{\vec{q}_{2}}} b_{\overrightarrow{q_{1}}}^{\dagger} c_{\vec{q}_{2}}^{\dagger}|0\rangle$
Comsidenimg only the $1^{\text {st }}$ order term: $U\left(t, t_{0}\right)=-i \int_{t_{0}}^{t} d t^{\prime} H_{1}\left(t^{\prime}\right)=-i \int e^{i H_{0} t^{\prime}} g \psi^{\dagger}(x) \psi(x) \phi(x) e^{-i H_{0} t^{\prime}} d^{3} x d t^{\prime}=-i g \int d^{4} x \psi^{\dagger}(x) \psi(x) \phi(x)$
Amplitude: $\langle f| s|i\rangle=-i g\langle f| \int d^{4} x \psi^{\dagger} \psi \phi|i\rangle$
Fields: $\phi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{k}}}\left(a_{\vec{k}} e^{-i k \cdot x}+a_{\vec{k}}^{\dagger} e^{i k \cdot x}\right) \quad \psi(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{k}}}}\left(b_{\vec{k}} e^{-i k \cdot x}+c^{\dagger} \vec{k} e^{i k \cdot x}\right) \quad \psi^{\dagger}(x)=\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\vec{k}}}}\left(c_{\vec{k}} e^{-i k \cdot x}+b_{\vec{k}}^{\dagger} e^{i k \cdot x}\right)$
It follows that:
2 meson state with zeno overlap with if)

$$
\begin{aligned}
& \left.\phi(x)|i\rangle=\int \frac{d^{3 k}}{(2 \pi)^{3}} \sqrt{\frac{\sqrt{2 E_{\vec{F}}}}{\sqrt{P_{\vec{k}}}}}\left(a_{\vec{k}} a_{\vec{p}}^{+} e^{-i k \cdot x}+a_{k}^{+} a_{\vec{p}}^{+} e^{i k \cdot x}\right)|0\rangle=\int \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{2 E_{\vec{p}}} \sqrt{2 E_{\vec{k}}}\left(a_{\vec{p}}^{+} a_{\vec{k}}+\left[a_{\vec{k}}, a_{\vec{p}}^{+}\right]\right) e^{-i k x}|0\rangle+\mid m_{1}^{+}, m_{2}\right)=e^{-i p \cdot x}|0\rangle \\
& \langle f| S|i\rangle=-i g\langle 0| d^{4} x \frac{d^{3} k_{1} d^{3} k_{2}}{(2 \pi)^{b}} \frac{\sqrt{E_{\vec{k}_{1}} \cdot \overrightarrow{\vec{a}}_{1}}}{\sqrt{E_{\vec{k}_{1}} \vec{k}_{2}}} c_{\vec{q}_{2}} b_{q_{1}}\left(c_{\vec{k}_{1}} e^{-i k_{1} \cdot x}+b_{\vec{k}_{1}}^{+} e^{i k_{2} \cdot x}\right)\left(c_{\vec{k}_{2}}^{+} e^{+i k_{2} \cdot x}+b_{\overrightarrow{k_{2}}} e^{-i k_{i} x}\right) e^{-i p \cdot x}|0\rangle=
\end{aligned}
$$

$$
\begin{aligned}
& =-i g\left\langle 01 \int d^{4} x e^{i\left(q_{1}+q_{2}-p\right) \cdot x} \mid 0\right\rangle=-i g(21)^{4}\left\langle 01 \delta\left(q_{1}+q_{2}-p\right) \mid 0\right\rangle
\end{aligned}
$$

Wick's Theorem

Consider a real scalar field $\phi(x)$. It can be decomposed into:
$\phi^{+}(x)=\int \frac{d^{3} p}{(2 \pi)^{2}} \frac{1}{\sqrt{2 E F}}$ ape $e^{-i p \cdot x} \quad$ "Positive Frequency $P_{i e c e "}$

Note:

- Normal Ondenieng requires ϕ^{-}b be it the left of ϕ^{+}

```
Assuming \(x^{0}>y^{0}\) :
    \(T \phi(x) \phi(y)=\phi(x) \phi(y)=\left(\phi^{\dagger}(x)+\phi^{-}(x)\right)\left(\phi^{\dagger}(y)+\phi^{-}(y)\right)=\)
        \(=\phi^{\dagger}(x) \phi^{+}(y)+\phi^{+}(x) \phi^{-}(y)+\phi^{-}(x) \phi^{\dagger}(y)+\phi^{-}(x) \phi^{-}(y)=\)
\(T \phi(x) \phi(y)=: \phi(x) \phi(y):+\Delta_{F}(x-y)\)
\(T \psi(x) \psi^{\top}(y)=: \psi(x) \psi^{\dagger}(y):+\Delta_{f}(x-g)\)
where \(\Delta_{F}(x-y)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i e^{i k \cdot(x-\psi)}}{k^{2}-m^{2}+i \varepsilon}\)
```

```
    \(=\phi^{+}(x) \phi^{+}(y)+\phi^{-}(y) \phi^{+}(x)+\left[\phi^{+}(x), \phi^{-}(y)\right]+\phi^{-}(x) \phi^{+}(y)+\phi^{-}(x) \phi^{-}(y)=\)
    \(=\phi^{+}(x) \phi^{+}(y)+\phi^{-}(x) \phi^{+}(y)+\phi^{-}(y) \phi^{+}(x)+\phi^{-}(x) \phi^{-}(g)+\left[\phi^{+}(x), \phi^{-}(y)\right]=\)
    \(=: \phi(x) \phi(y):+D(x-y)\)
```

Similarly, if x° < y° :
$T \phi(x) \phi(y)=: \phi(x) \phi(y):+D(y-x)$

Definition: Contraction of a pain of fields in a string of operations ... $\phi\left(x_{1}\right) \ldots \phi\left(x_{2}\right) \ldots$ means to replacing those operators with He Feynman Propagator The contractions, based on prexicas results, are: $\widetilde{\phi(x) \phi(g)}=\widetilde{\psi(x) \psi^{\dagger}(y)}=\Delta_{f}(x-y)$ and $\overline{\psi(x) \psi(y)}=\widetilde{\psi^{\prime}(x) \psi^{\top}(y)}=0$

Theorem: For a collection of N fields $\phi_{i}=\phi\left(x_{i}\right)$ Vic $[1, N]$ we hove: $T\left(\phi_{1} \ldots \phi_{N}\right):=\phi_{1} \ldots \phi_{N}:+:$ All passible contractions:
e.g. $T\left(\phi_{1} \phi_{2} \phi_{3} \phi_{4}\right)=\boldsymbol{\phi}_{1} \phi_{2} \phi_{3} \phi_{4}: \widetilde{\phi}_{1} \boldsymbol{\phi}_{2}: \phi_{3} \phi_{4}:+\widetilde{\phi}_{1} \tilde{\phi}_{3}: \phi_{2} \phi_{4}+\widetilde{\phi}_{1} \widetilde{\phi}_{4}: \phi_{2} \phi_{3}+\widetilde{\phi}_{2} \mathscr{\phi}_{3}: \phi_{1} \phi_{4}:+\widetilde{\phi}_{2} \tilde{\phi}_{4}: \phi_{1} \phi_{3}:+\widetilde{\phi}_{3} \tilde{\phi}_{4}: \phi_{1} \phi_{2}:+$ $+\widetilde{\phi}_{1} \widehat{\phi}_{2} \widetilde{\phi}_{3}^{\prime} \bar{\phi}_{4}+\widetilde{\phi}_{1} \widetilde{\phi}_{3} \widetilde{\phi}_{2} \mathscr{\phi}_{4}+\widetilde{\phi}_{1} \widehat{\phi}_{4} \widetilde{\phi}_{2} \widehat{\phi}_{3}$

Representation of Lorene Group
A general field $\phi^{a}(x)$ com tromsfotron as: $\phi^{a}(x) \longmapsto D[\Lambda]_{b}^{a} \phi^{b}\left(\Lambda^{-1} x\right)$
$D[\Lambda]$ is a representation of the Lorentz Group and thus satisfies the following properties:

- $D\left[\Lambda_{1}\right] D\left[\Lambda_{2}\right]=D\left[\Lambda_{1} \Lambda_{2}\right]$
- $D\left[\Lambda^{-1}\right]=D^{-1}[\Lambda]$
- $D[1]=\mathbb{1}$

The Loreante Group is a Lie group and we thus consider the infinisitsiond tronssfonmation: $\Lambda_{v}^{\mu}=\delta_{v}^{\mu}+w^{\mu}{ }_{v}$ with the property $\eta^{\sigma \rho} \Lambda_{\sigma}^{\mu} \Lambda_{\rho}^{\nu}=\eta^{\mu \nu}$ s.t. $w^{\mu \nu}+w^{\nu \mu}=0$ As $w^{\mu \nu}$ is antisgonanetric there 6 indef pendent components in a [4] dimensional representation
There ate 6 transformations: 3 boosts 3 notations ie. ane for exch independent dement

We com define a basis of six diff. matrix to describe any trans formation
Basis matrices are called generators $H^{\wedge}(A=1, \ldots, 6)$ or $M^{\rho^{\sigma}}$ (with $H^{\rho \sigma}=-H^{g^{\sigma}}$)
\longrightarrow Definition of antisymmmetrog generations:

$$
\left.\begin{array}{l}
\left(\mu^{\delta)^{\mu \nu}}=\eta^{s \mu} \eta^{\sigma \nu}-\eta^{\sigma \mu} \eta^{\rho \nu}\right. \\
\left(H^{\rho}\right)^{\mu}{ }_{\nu}=\eta^{s \mu} \delta_{v}^{\sigma}-\eta^{\sigma \mu} \delta_{v}^{\rho}
\end{array}\right] \begin{aligned}
& \pi^{0 i}: \text { Boost in } x^{i} \text { - direction } \\
& M^{i j}: \text { Rotation in } x^{i}, x^{j} \cdot \text { plane }
\end{aligned}
$$

\rightarrow Gemeratoins obey hie Alegblo:

$$
\left[\mu^{\rho \sigma}, r^{2 v}\right]=\eta^{\sigma \tau} r^{\rho \nu}-\eta^{\rho \tau} r^{\sigma v}+\eta^{\rho \nu} r^{\sigma \tau}-\eta^{\sigma v} r^{\rho \tau}
$$

We com mow write $\omega^{\mu}{ }_{v}$ as a linear superposition of gemerations: $\omega^{\mu}{ }_{v}=\frac{1}{2} \Omega_{\rho^{\sigma}}\left(\pi^{\rho \sigma}\right)^{\mu}{ }_{v}$
The reps com them be whiten as: $\Lambda=\exp \left(\frac{1}{2} \Omega_{\rho} H^{H^{\circ \sigma}}\right)$

Spicier Representation
Clifford Algebra: $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 \eta^{\mu \nu} \mathbb{1}$ where γ^{μ} is a oxatricx

Properties of γ-matinices:

1) From $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} 11$ we hove:

- $\left(\gamma^{0}\right)^{2}=1$ and $\left(\gamma^{i}\right)^{2}=-1$
- $\gamma^{\mu} \gamma^{\nu}=-\gamma^{\mu} \gamma^{\nu}$ if $\mu \neq \nu$
which obey (4.13). For example, we may take

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

where each element is itself a 2×2 matrix, with the σ^{i} the Pauli matrices

$$
\sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

which themselves satisfy $\left\{\sigma^{i}, \sigma^{j}\right\}=2 \delta^{i j} . \quad\left[\sigma^{i}, \sigma^{j}\right]=2 \boldsymbol{\varepsilon}_{i j k} \sigma_{k}$
2) Comencmutator: $S^{\rho \sigma}=\frac{1}{4}\left[\gamma^{\rho}, \gamma^{\sigma}\right]=\frac{1}{2}\left(\gamma^{\rho} \gamma^{\sigma}-\eta^{\rho \sigma} 1\right) \Longrightarrow S^{\mu \mu}=0$ and $S^{\mu \nu}=\frac{1}{2} \gamma^{\mu} \gamma^{\nu}$ if $\mu \neq \nu$

$$
\left.\begin{array}{l}
{\left[s^{\mu \nu}, \gamma^{\rho}\right]=\gamma^{\mu} \eta^{\nu \rho}-\gamma^{\nu} h^{\rho \mu}} \\
{\left[s^{\mu \nu}, s^{\rho}\right]=\eta^{\nu \rho} s^{\mu \sigma}-\eta^{\mu \rho} s^{\nu \sigma}+\eta^{\mu \sigma} s^{\nu \rho}-h^{\nu \sigma} s^{\mu \rho}}
\end{array}\right] \Longrightarrow s^{\mu \nu} \text { Matrices satisfy Lorentz Alogbtra }
$$

Proofs

$$
\begin{aligned}
& s^{\rho \sigma}=\frac{1}{4}\left[\gamma^{\rho}, \gamma^{\sigma}\right]=\frac{1}{4}\left[\gamma^{\rho} \gamma^{\sigma}-\gamma^{\sigma} \gamma^{\rho}\right]=\frac{1}{4}\left[2 \gamma^{\rho} \gamma^{\sigma}-\left\{\gamma^{\rho}, \gamma^{\sigma}\right\}\right]=\frac{1}{2}\left(\gamma^{\rho} \gamma^{\sigma}-h^{\rho \sigma} 11\right)=\left\{\begin{array}{l}
0 \quad \text { if } \rho=\sigma \\
\frac{1}{2} \gamma^{\rho} \gamma^{\sigma} \text { if } g^{\neq \sigma}
\end{array}\right. \\
& {\left[s^{\mu \nu}, \gamma^{\rho}\right]=-\frac{1}{2}\left(\eta^{\mu \nu} \mathbb{1}-\gamma^{\mu} \gamma^{\nu}\right) \gamma^{\rho}-\frac{1}{2} \gamma^{\rho}\left[-\left(\eta^{\mu \nu} \nu-\gamma^{\mu} \gamma^{\nu}\right)\right]=} \\
& =-\frac{1}{2}\left(\gamma^{\beta} \gamma^{\mu} \gamma^{\nu}-\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)=-\frac{1}{2}\left[\left\{\gamma^{\rho}, \gamma^{\mu}\right\} \gamma^{\nu}-\gamma^{\mu} \gamma^{\rho} \gamma^{\nu}-\gamma^{\mu}\left\{\gamma^{\nu}, \gamma^{\rho}\right\}+\gamma^{\mu} \gamma^{\rho} \gamma^{\nu}\right]= \\
& =-\frac{1}{2}\left[2 \eta^{\beta \mu} \gamma^{\nu}-2 \eta^{\nu \rho} \gamma^{\mu}\right]=\eta^{\nu \rho} \gamma^{\mu}-\eta^{\beta \mu} \gamma^{\nu} \\
& {\left[s^{\mu \nu}, s^{\rho \sigma}\right]=\frac{1}{4}\left(\gamma^{\mu} \gamma^{\nu}-\eta^{\mu \nu} 1\right)\left(\gamma^{\rho} \gamma^{\sigma}-h^{\rho \sigma} 11\right)-\frac{1}{4}\left(\gamma^{\rho} \gamma^{\sigma}-\eta^{\rho \sigma} 11\right)\left(\gamma^{\mu} \gamma^{\nu}-\eta^{\mu \nu} 1\right)=} \\
& =\frac{1}{4}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}-\gamma^{\mu} \gamma^{\nu} h^{\rho \sigma}-\gamma^{\rho} \gamma^{\sigma} h^{\mu \nu}+\eta^{\mu \nu} \eta^{\rho \sigma} 1-\gamma^{\rho} \gamma^{\sigma} \gamma^{\mu} \gamma^{\nu}+\gamma^{\rho} \gamma^{\sigma} \eta^{\mu \nu}+\gamma^{\mu} \gamma^{\nu} \eta^{\rho \sigma}-h^{\mu \nu} \eta^{\rho \rho} 1\right]= \\
& =\frac{1}{4}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\beta} y^{\sigma}-\gamma^{\rho} y^{\sigma} \gamma^{\mu} y^{\nu}\right]= \\
& =\frac{1}{4}\left[\gamma^{\mu}\left\{\gamma^{\nu}, \gamma^{s}\right\} \gamma^{\sigma}-\gamma^{\mu} \gamma^{\beta} \gamma^{\nu} \gamma^{\sigma}-\gamma^{s}\left\{\gamma^{\sigma}, \gamma^{\mu}\right\} \gamma^{\nu}+\gamma^{\rho} \gamma^{\mu} \gamma^{\sigma} \gamma^{\nu}\right]= \\
& =\frac{1}{4}\left[\gamma^{\mu} \gamma^{\sigma}\left\{\gamma^{\nu}, \gamma^{\beta}\right\}-\left\{\gamma^{\mu}, \gamma^{\beta}\right] \gamma^{\nu} \gamma^{\sigma}+\gamma^{\rho} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma}-\gamma^{\rho} \gamma^{\nu}\left\{\gamma^{\sigma}, \gamma^{\mu}\right\}+\gamma^{\beta} \gamma^{\mu}\left\{\gamma^{\sigma}, \gamma^{\nu}\right\}-\gamma^{\beta} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma}\right]= \\
& =\frac{1}{2}\left[\gamma^{\mu} \gamma^{\sigma} \eta^{\nu \rho}-\gamma^{\nu} \gamma^{\sigma} \eta^{\mu \rho}+\eta^{\sigma \nu} \gamma^{\rho} \gamma^{\mu}-\eta^{\sigma \mu} \gamma^{\rho} \gamma^{\nu}\right]= \\
& =\frac{1}{2}\left[\left(\gamma^{\beta} \gamma^{\sigma}-\eta^{\mu \sigma} 1\right) h^{\nu \rho}-\left(\gamma^{\nu} \gamma^{\sigma}-h^{\nu \sigma}\right) h^{\mu \beta}+\left(\gamma^{\rho} \gamma^{\mu}-h^{\beta \mu}\right) h^{\sigma \nu}-\eta^{\sigma \mu}\left(\gamma^{\beta} \gamma^{\mu}-\eta^{\rho \mu} 11\right)\right]= \\
& =\eta^{\nu s} s^{\rho \sigma}-\eta^{\mu \rho} s^{\nu \sigma}+\eta^{\sigma \nu} s^{\rho \mu}-\eta^{\sigma \mu} s^{\rho \mu}
\end{aligned}
$$

Spimons
Under Lorentz Transformation we have:
N.B. $\Omega_{\rho \sigma}$ are the saccue for Λ and for $S[\Lambda]$ even though $H^{S^{\circ}} \neq S^{S^{\circ}}$. This ensures that they represent the same transformations

Rotations
A rotation in $x^{i}-x^{j}$ plane is given by $S^{i j}=\frac{1}{2} \gamma^{i} \gamma^{j}$ with $i \neq j \Longrightarrow S^{i j}=\frac{1}{2}\left(\begin{array}{cc}0 & \sigma^{i} \\ -\sigma^{i} & 0\end{array}\right)\left(\begin{array}{cc}0 & \sigma^{j} \\ -\sigma^{j} & 0\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}-\sigma^{i} \sigma^{j} & 0 \\ 0 & -\sigma^{i} \sigma^{j}\end{array}\right)$
What is $\sigma^{i} \sigma^{j}$?
Pauli Matrices satisfy

$$
\begin{aligned}
& \left\{\sigma^{i}, \sigma^{j}\right\}=\sigma^{i} \sigma^{j}+\sigma^{j} \sigma^{i}=2 \delta^{i j} \\
& {\left[\sigma^{i}, \sigma^{j}\right]=\sigma^{i} \sigma^{j}-\sigma^{j} \sigma^{i}=2 i \varepsilon^{i j k} \sigma^{k}}
\end{aligned}
$$

It follows that:

$$
\left.\left.\begin{array}{l}
\text { follows that: } \\
\sigma^{j} \sigma^{i}=2 \delta^{i j}-\sigma^{i} \sigma^{j} \\
{\left[\sigma^{i}, \sigma^{j}\right]=2\left(\sigma^{i} \sigma^{j}-\delta^{i j}\right)=2 \varepsilon^{i j k} \sigma^{k}}
\end{array}\right\} \quad \sigma^{i} \sigma^{j}=i \varepsilon^{i j k} \sigma^{k}+\delta^{i j}\right]
$$

Them $\Omega_{\rho \sigma}=-\frac{1}{-1} \varepsilon_{i j k} \psi^{k}$ s.t. $\Omega_{12}=-\frac{1}{6} \psi^{3}$ i.e. rotation around x^{3} by angle ψ^{3}
It the follows that: $\Omega_{i j} s^{i j}=\Omega_{12} s^{42}+\Omega_{21} s^{21}+\ldots=2\left(\Omega_{21} s^{21}\right)+\ldots=2\left(\Omega_{12} s^{12}+\Omega_{13} s^{13}+\Omega_{23} s^{23}\right)=\frac{i}{2}\left[\psi^{3}\left(\begin{array}{cc}\sigma^{3} & 0 \\ 0 & \sigma^{3}\end{array}\right)+\psi^{2}\left(\begin{array}{cc}\sigma^{2} & 0 \\ 0 & \sigma^{2}\end{array}\right)+\psi^{1}\left(\begin{array}{cc}\sigma^{4} & 0 \\ 0 & \sigma^{1}\end{array}\right)\right]=\frac{i}{2} \vec{\psi} \cdot \vec{\sigma}$ Let's define: $\vec{\psi}=\left(\psi^{1}, \psi^{2}, \psi^{3}\right)$ and $\vec{\sigma}=\left(s^{23}, s^{13}, s^{12}\right)$ s.t. $S[\Lambda]=\left(\begin{array}{ll}e^{i \vec{\psi} \cdot \vec{\theta} / 2} & 0 \\ 0 & e^{i \dot{\psi} \cdot \vec{\delta} / 2}\end{array}\right.$

Boosts

$$
S^{0 i}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
-\sigma^{i} & 0 \\
0 & \sigma^{i}
\end{array}\right) \text { and if } \Omega_{i 0}=-\Omega_{0 i}=\chi_{i} \text { we hove } S[\Lambda]=\left(\begin{array}{cc}
e^{+\vec{x} \cdot \vec{\sigma} / 2} & 0 \\
0 & e^{-\vec{x} \cdot \vec{\sigma} / 2}
\end{array}\right)
$$

N.B There are no finite dimensional unitary representations of the Lorentz Group. Therefore $S^{\dagger}[\Lambda] S[\Delta] \neq 1$

Proof that $S^{+}[\Lambda] S[\Lambda] \neq 1$:

$$
S^{-1}[\Lambda] S[\Lambda]=1 \Longrightarrow S^{-1}[\Lambda]=\exp \left(-\frac{1}{2} \Omega_{\rho} S^{\rho \sigma}\right)
$$

Thus, $S^{\dagger}[\Lambda]=S^{-1}[\Lambda]$ if $\left(S^{\rho \sigma}\right)^{\dagger}=-S^{g^{\sigma}}$ ie. $S^{g \sigma}$ is omli-herniciom
As $s^{g^{\sigma}} \alpha\left[\gamma^{s}, \gamma^{\sigma}\right]$, $s^{\sigma \sigma}$ is onti-hermmitian if all γ^{μ} ate conti-hercoition
Hoarener:
$\left(y^{0}\right)^{2}=1 \Longrightarrow$ Real Eigensoalues
$\left(\gamma^{i}\right)^{2}=-1 \Longrightarrow$ Imagionang Eigenvalues

If we choose γ^{i} to be onti-hercantions, γ^{0} will be hermitian
\rightarrow Rotations are unoitang bat boosts are not

There is 0∞ way to chose γ^{μ} such that $S^{\mu \nu}$ is omti-herasitian
In the Chiral representation: $\left(\gamma^{0}\right)^{t}=\gamma^{0}$ and $\left(\gamma^{i}\right)^{t}=-\gamma^{i}$

Comstructiong an Action
consider the field $\psi(x)$ with adjoint ψ^{\dagger}
It follows that: $\psi(x) \longmapsto S[\Lambda] \psi\left(\Lambda^{-1} x\right)$ and $\psi^{+}(x) \longmapsto \psi^{+}\left(\Lambda^{-1} x\right) S^{\dagger}(\Lambda] \Longrightarrow$ As $S^{+}[\Lambda] S[\Lambda] \neq 1 \psi^{+}(x) \psi(x)$ is met a potent ε Scalar

As the action must he a suitable Lorentz Scalar we meed to find an appropriate Lorentz Scalar
Let's consider a representation that satisfies $\left(\gamma^{0}\right)^{\dagger}=\gamma^{0}$ and $\left(\gamma^{i}\right)^{\dagger}=-\gamma^{i}$
It follows that:

$$
\begin{aligned}
& \gamma^{0} \gamma^{\mu} \gamma^{0}=\gamma^{0}\left\{\gamma^{\mu}, \gamma^{0}\right\}-\left(\gamma^{0}\right)^{2} \gamma^{\mu}=2 \eta^{\circ \mu} \gamma^{0}-\gamma^{\mu}=\left(\gamma^{\mu}\right)^{\top} \\
& \left(s^{\mu \nu}\right)^{\dagger}=\frac{1}{4}\left[\left(\gamma^{\nu}\right)^{\dagger},\left(\gamma^{\mu}\right)^{+}\right]=\frac{1}{4}\left[\gamma^{0} \gamma^{\nu}\left(\gamma^{0}\right)^{2} \gamma^{\mu} \gamma^{0}-\gamma^{\circ} \gamma^{\mu}\left(\gamma^{0}\right) \gamma^{\nu} \gamma^{0}\right]=\gamma^{0}\left[\gamma^{\nu}, \gamma^{\mu}\right] \gamma^{0}=-\gamma^{0} 5^{\mu \nu} \gamma^{0}
\end{aligned}
$$

As a result: $\quad s^{\dagger}[\Lambda]=\exp \left(\frac{1}{2}-\Omega_{g o}\left(S^{\circ}\right)^{\dagger}\right)=\exp \left[-\frac{1}{2} \Omega_{\rho \sigma} \gamma^{0} S^{g^{\circ}} \gamma^{0}\right]=\gamma^{\circ} S^{-1}[\Lambda] \gamma^{0}$
Summary

$$
\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0} \text { and }\left(s^{\mu \nu}\right)^{\dagger}=-\gamma^{0} s^{\mu \nu} \gamma^{0}
$$

It follows that:

$$
S^{\dagger}[\Lambda]=\gamma^{0} S^{-1}[\Lambda] \gamma^{\circ}
$$

$\bar{\psi}=\psi^{+} \gamma^{\circ}$ st. $\bar{\psi} \psi$ is a Lorentz Scalar

Define the Dirac Adjoint: $\bar{\psi}=\psi \gamma^{\circ}$
Claim: $\bar{\psi}(x) \psi(x)$ is a Loremte scalar
Proof: $\bar{\psi}(x) \psi(x)=\psi^{\dagger}(x) \gamma^{0} \psi(x)$

$$
\begin{aligned}
\bar{\psi}(x) \psi(x) \longmapsto & \psi^{+}\left(\Lambda^{-1} x\right) S^{+}[\Lambda] \gamma^{0} S[\Lambda] \psi\left(\Lambda^{-1} x\right)= \\
& =\psi^{+}\left(\Lambda^{-1} x\right) \gamma^{0} S^{-1}[\Lambda]\left(\gamma^{0}\right)^{2} S[\Lambda] \psi\left(\Lambda^{-1} x\right)= \\
& =\psi^{+}\left(\Lambda^{-1} x\right) \gamma^{0} \psi\left(\Lambda^{-1} x\right)=\bar{\psi}\left(\Lambda^{-1} x\right) \psi\left(\Lambda^{-1} x\right)
\end{aligned}
$$

Claim: $\bar{\psi} \gamma^{\mu} \psi$ trosformss like a vector
Proof: $\bar{\psi} \gamma^{\mu} \psi \longmapsto \psi^{+}\left(\Lambda^{-1} x\right) S^{+}[\Lambda] \gamma^{\mu} S[\Lambda] \psi\left(\Lambda^{-1} x\right)=$

$$
\begin{aligned}
& =\psi^{+}\left(\Lambda^{-1} x\right) \gamma^{0} S^{-1}[\Lambda]\left(\gamma^{0}\right)^{2} \gamma^{\mu} S[\Lambda] \psi\left(\Lambda^{-1} x\right)= \\
& =\psi^{+}\left(\Lambda^{-1} x\right) \gamma^{0} S^{-1}[\Lambda] \gamma^{\mu} S[\Lambda] \psi\left(\Lambda^{-1} x\right)= \\
& =\bar{\psi}\left(\Lambda^{-1} x\right) S^{-1}[\Lambda] \gamma^{\mu} S[\Lambda] \psi\left(\Lambda^{-1} x\right)= \\
& =\bar{\psi}\left(\Lambda^{-1} x\right)\left\{\left[S^{-1}[\Lambda], \gamma^{\mu}\right] S[\Lambda]+\gamma^{\mu}\right\} \psi\left(\Lambda^{-1} x\right)
\end{aligned}
$$

If $\bar{\psi} \gamma^{\mu} \psi$ thonosformons like a vector: $\Lambda^{\mu}{ }_{\nu} \gamma^{\nu}=\gamma^{\mu}+\left[S^{-1}[\Lambda], \gamma^{\mu}\right] S[\Lambda]$

As $S[\Lambda]=\exp \left(\frac{1}{2} \Omega_{g \sigma} r^{5}\right)$ we hove:

$$
\begin{aligned}
& S[\Lambda] \approx 1+\frac{1}{2} \Omega_{g} S^{g \sigma}+\ldots \\
& S^{-1}[\Lambda] \approx 1-\frac{1}{2} \Omega_{g \sigma} S^{g \sigma}+\ldots
\end{aligned}
$$

It follows that: $\left[S^{-1}[\Lambda], \gamma^{\mu}\right] S[\Lambda]=\left\{\left[1, \gamma^{\mu}\right]-\frac{1}{2} \Omega_{\rho_{\sigma}}\left[s^{\rho}, \gamma^{\mu}\right]+\ldots\right\}\left[1+\frac{1}{2} \Omega_{\sigma^{\prime}} s^{s^{\sigma}}+\ldots\right] \approx-\frac{1}{2} \Omega_{\rho^{\sigma}}\left[s^{g^{\sigma}}, \gamma^{\mu}\right]=\frac{1}{2} \Omega_{g^{\sigma}}\left(\pi^{\rho^{\rho}}\right)^{\mu}{ }_{\nu} \gamma^{\nu}$
Them: $\left[s^{s}, \gamma\right]=-\left(\pi^{s}\right)^{\mu}{ }_{\nu} \gamma^{\nu}$
As $\left[s^{s \sigma}, \gamma^{\mu}\right]=\gamma^{\rho} \eta^{\sigma \mu}-\gamma^{\sigma} h^{\mu s}$ and $\left(\mu^{\sigma}\right)^{\mu}{ }_{v}=h^{\rho \mu} \delta_{v}^{\sigma}-\eta^{\sigma \mu} \delta^{\rho}{ }_{v}$ we hove:

$$
\left(\mu^{\rho}\right)^{\mu}{ }_{v} \gamma^{\nu}=-\left(\eta^{\sigma \mu} \gamma^{s}-\eta^{s \mu} \gamma^{\sigma}\right)=-\left[s^{\sigma s}, \gamma^{\mu}\right]
$$

Thus: $\bar{\psi}(x) \gamma^{\mu} \psi(x) \longmapsto \Lambda_{v}^{\mu} \bar{\psi}\left(\Lambda^{-1} x\right) \gamma^{\nu} \psi\left(\Lambda^{-1} x\right)$

Claim: $\bar{\psi} \gamma^{\mu} \gamma^{\nu} \psi$ thansformens as a lorene Tension
The symmetric port tromsoretrms proportional to $\eta^{\mu \nu} \bar{\psi} \psi$ and the anti symans. $\sim \bar{\psi} S^{\mu \nu} \psi$

Diroc Action and Equations

Using the Lorentz scalars we cam create the following action: $S=\int d^{4} x \bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)$ The Duroc Lagrangian is thus: $\mathcal{L}_{D}=\bar{\psi}(x)[i \phi-m] \psi(x)$ where $\phi=\gamma^{\mu} \partial_{\mu}$

Dine Equations
Applying the Euler.Lagramog equation to \mathcal{L}_{D} gives the following quantities:

$$
\begin{array}{ll}
\partial \alpha / \partial \psi=-\bar{\psi}(x) m & \partial \alpha / \partial\left(\partial_{\alpha} \psi\right)=\bar{\psi}(x) i \gamma^{\alpha} \\
\partial \alpha / \partial \bar{\psi}=(i \not \gamma-m) \psi(x) & \partial \alpha / \partial\left(\partial_{\alpha} \bar{\psi}\right)=0
\end{array}
$$

As a result we have the following equations:
Dirac Equation: $(i \gamma-m) \psi(x)=0$
Adjoin l Equation: $\bar{\psi}(x)(i \overleftarrow{\phi}+m)=0$

The two equations are related by an adjoint transformanation:

$$
\text { Adjoint: } \begin{aligned}
{[(i \gamma-m) \psi(x)]^{\dagger} \gamma^{0} } & =\left[\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)\right]^{\dagger} \gamma^{0}=-i\left(\partial_{\mu} \psi^{\dagger}(x)\right)\left(\gamma^{\mu t} \gamma^{0}\right)-m \psi^{+} \gamma^{0}= \\
& =-i\left(\partial_{\mu} \psi^{\top}(x)\right)\left(\gamma^{\mu+1} \gamma^{0}\right)-m \bar{\psi}(x)=-i\left(\partial_{\mu} \psi^{\dagger}(x)\right)\left(\gamma^{0} \gamma^{\mu} \gamma^{0} \gamma^{0}\right)-m \bar{\psi}(x)= \\
& =-\bar{\psi}(x)\left(i \delta_{\mu} \gamma^{\mu}+m\right)=0
\end{aligned}
$$

One com also show that exch component of ψ satisfies the $k G$ equation:
As $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0$ so is $\left(i \gamma^{\nu} \partial_{\nu}+m\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)$
Therefore: $\left(i \gamma^{\nu} \partial_{\nu}+m\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=\left(-\gamma^{\nu} \gamma^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma^{\nu} \partial_{\nu}+i m \gamma^{\mu} \partial_{\mu}-m^{2}\right) \psi(x)=-\left(\gamma^{\nu} \gamma^{\mu} \partial_{\nu} \partial_{\mu}+m^{2}\right) \psi(x)=0$
It follows that: $\frac{1}{2}\left[\left(\gamma^{\nu} \gamma^{\mu} \partial_{\nu} \partial_{\mu}+m^{2}\right)+\left(\gamma^{\mu} \gamma^{\nu} \partial_{\mu} \partial_{\nu}+m^{2}\right)\right] \psi(x)=\left(\partial^{2}+m^{2}\right) \psi(x)=0$

Symonethies of the Dirce Action/Lagramian
The Dirce Action empags the Gollowieng symmethies

- Spocetine tromslations $\quad x^{\mu} \longmapsto\left(x^{\prime}\right)^{\mu}=x^{\mu}-\epsilon^{\mu}$
- Lorente troconformations $\quad \psi^{\alpha} \longrightarrow\left(\psi^{\prime}\right)^{\alpha}=S[\Lambda]_{\beta}^{\alpha} \psi^{\beta}\left(\Lambda^{-1} x\right)$
- Internod Vector symmemetry $\psi \longmapsto \psi^{\prime}=e^{-i \alpha} \psi$
- Axial symmetry $\quad \psi \longmapsto \psi^{\prime}=e^{i \alpha \gamma^{5}} \psi$ and $\bar{\psi} \longmapsto \bar{\psi}^{\prime}=\bar{\psi} e^{i \alpha \gamma^{5}}$

Spocetime Tramslations

$$
T: x^{\mu} \longmapsto x^{\mu}-\epsilon^{\mu} \Longrightarrow T^{-1}: x^{\mu} \longmapsto x^{\mu}+\epsilon^{\mu}
$$

The tromsformations ane

$$
\begin{aligned}
& \psi \longmapsto \psi^{\prime}(x)=\psi\left(T^{-1} x\right) \text { and } \bar{\psi} \longmapsto \bar{\psi}^{\prime}(x)=\bar{\psi}\left(T^{-1} x\right) \text { s.t. } \delta x=\epsilon^{\mu} \\
& \psi^{\prime}(x) \approx \psi(x)+\left(\partial_{\mu} \psi\right) \delta x=\psi(x)+\delta \psi \Longrightarrow \delta \psi=\left(\partial_{\mu} \psi\right) \delta x=\epsilon^{\mu} \partial_{\mu} \psi \\
& \bar{\psi}^{\prime}(x) \approx \bar{\psi}(x)+\left(\partial_{\mu} \bar{\psi}\right) \delta x=\bar{\psi}(x)+\delta \bar{\psi} \Longrightarrow \delta \bar{\psi}=\left(\partial_{\mu} \bar{\psi}\right) \delta x=\epsilon^{\mu} \partial_{\mu} \bar{\psi}
\end{aligned}
$$

$$
\begin{aligned}
\partial_{\nu} \alpha & =\left(\partial_{\nu} \bar{\psi}\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)+\bar{\psi} \partial_{\nu}\left[\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi\right]= \\
& =\left(\partial_{\nu} \bar{\psi}\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)+\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right)\left(\partial_{\nu} \psi\right)=
\end{aligned}
$$

The Lagramgiam is: $\quad \mathcal{L} \longmapsto \mathcal{L}^{\prime}$

$$
\begin{aligned}
\mathcal{L}^{\prime} & =\bar{\psi}^{\prime}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi^{\prime}(x)=[\bar{\psi}(x)+\delta \bar{\psi}]\left(i \gamma^{\mu} \partial_{\mu}-m\right)[\psi(x)+\delta \psi]= \\
& =\mathcal{L}+\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \delta \psi+\delta \bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)+\delta \bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \delta \psi= \\
& =\mathcal{L}+\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \epsilon^{v} \partial_{\nu} \psi+\epsilon^{v} \partial_{\nu} \bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)+\epsilon^{\alpha} \partial_{\alpha} \bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \epsilon^{\beta} \partial_{\beta} \psi= \\
& =\mathcal{L}+\epsilon^{\nu} \partial_{\nu} \mathcal{L}+\epsilon^{\beta} \partial_{\beta} \bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \epsilon^{\gamma} \partial_{\gamma} \psi=\mathcal{L}+\epsilon^{v} \partial_{\nu} \alpha=\mathcal{L}+\delta \mathcal{L}
\end{aligned}
$$

It follows that: $\delta \mathcal{L}=\partial_{\mu} F^{\mu}=\epsilon^{\nu} \partial_{v} \mathcal{L} \Longrightarrow F^{\mu}=\delta_{v}^{\mu} \epsilon^{\nu} \mathcal{L}$
The consemped current is: $j^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} \delta \psi+\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \bar{\psi}\right)} \delta \bar{\psi}-F^{\mu}=\bar{\psi} i \gamma^{\mu} \epsilon^{v} \partial_{\nu} \psi-\delta^{\mu}{ }_{v} \epsilon^{\nu} \mathcal{L}$ s.t. $\partial_{\mu} j^{\mu}=0$
As ϵ^{ν} is comst. we com white $j^{\mu}=\epsilon^{\nu}\left[\bar{\psi}_{i} \gamma^{\mu} \partial_{v} \psi-\delta^{\mu}{ }_{v} \alpha\right]$ and as $\partial_{\mu} j^{\mu}=0$, we com remove the connt. ϵ^{ν} emtirely We com thas write the following temsor: Usimg Dinoc Equation
Emergy Momentuam Temsor: $T^{\mu}{ }_{v}=\bar{\psi} i \gamma^{\mu} \partial_{v} \psi-\delta^{\mu}{ }_{v} \alpha=\bar{\psi} i \gamma^{\mu} \partial_{v} \psi$

Loremte Troms formations

$$
\begin{aligned}
& x^{\mu} \longmapsto\left(x^{\nu}\right)^{\mu}=\Lambda_{v}^{\mu} x^{\nu} \quad \text { where } \Lambda=\exp \left[\frac{1}{2} \Omega_{\rho \sigma} \mu^{\rho \sigma}\right] \text { s.t. } \Lambda^{\mu}{ }_{v}=\delta^{\mu}{ }_{v}+\overbrace{\frac{1}{2} \Omega_{g \sigma}\left(n^{\rho \sigma}\right)^{\mu}}^{\omega^{\mu}{ }_{v}}+\ldots \\
& \psi^{\alpha} \longmapsto\left(\psi^{\prime}\right)^{\alpha}=S[\Lambda]_{\beta}^{\alpha} \psi^{\beta}\left(\Lambda^{-1} x\right) \quad \text { where } S[\Lambda]=\exp \left[\frac{1}{2} \Omega_{\rho \sigma} S^{\sigma}\right] \text { s.t. } S[\Lambda]_{\beta}^{\alpha}{ }^{=} \delta_{\beta}^{\alpha}+\frac{1}{2} \Omega_{\rho \sigma}\left(s^{\sigma}\right)^{\alpha}{ }_{\beta}+\ldots \\
& \bar{\psi}^{\alpha} \longmapsto\left(\bar{\psi}^{\prime}\right)^{\alpha}=\bar{\psi}^{\beta}\left(\Lambda^{-1} x\right) S[\Lambda]_{\beta}^{\alpha}
\end{aligned}
$$

Nole: $\left(\mu^{\rho^{\sigma}}\right)_{\nu}^{\mu}=\eta^{\rho \mu} \delta_{v}^{\sigma}-\eta^{\sigma \mu} \delta_{\nu}^{\rho} \Longrightarrow \omega_{\nu}^{\mu}=\frac{1}{2} \Omega_{\rho \sigma}\left(\Pi^{\rho^{\sigma}}\right)_{\nu}^{\mu}=\frac{1}{2} \Omega_{g^{\sigma}}\left(\eta^{\mu \mu} \delta_{v}^{\sigma}-\eta^{\sigma \mu} \delta_{\nu}^{\rho}\right)=\frac{1}{2}\left(\Omega_{\nu}^{\mu}-\Omega_{\nu}^{\mu}\right) \Longrightarrow \omega^{\mu \nu}=\Omega^{\mu \nu}$
It follows that, for small tromsfonmations, the fields tromsfonmen as:

$$
\begin{aligned}
& \left(\psi^{\prime}\right)^{\alpha} \approx\left[\delta_{\beta^{\alpha}}+\frac{1}{2} \Omega_{\rho^{\sigma}}\left(\delta^{\sigma}\right)_{\beta}^{\alpha}\right] \psi^{\beta}\left(\left(\delta_{\nu}^{\mu}-\omega_{\nu}^{\mu}\right) x^{\nu}\right) \approx\left[\delta_{\beta}^{\alpha}+\frac{1}{2} \Omega_{\rho^{\sigma}}\left(\delta^{\sigma}\right)_{\beta}^{\alpha}\right]\left[\psi^{\beta}(x)+\delta x\left(\partial_{\mu} \psi^{\beta}\right)\right]= \\
& =\left[\delta_{\beta}^{\alpha}+\frac{1}{2} \Omega_{\rho \sigma}\left(s^{j^{\sigma}}\right)_{\beta}^{\alpha}\right]\left[\psi^{\beta}(x)-\omega_{\nu}^{\mu} x^{\nu}\left(\partial_{\mu} \psi^{\beta}\right)\right]= \\
& =\psi^{\alpha}(x)-\omega^{\mu}{ }_{\nu} x^{\nu} \partial_{\mu} \psi^{\alpha}+\frac{1}{2}-\Omega_{\rho^{\sigma}}\left(S^{g \sigma}\right)_{\beta}^{\alpha} \psi^{\beta}(x)+\ldots= \\
& \approx \psi^{\alpha}(x)-\omega^{\mu}{ }_{\nu} x^{\nu} \partial_{\mu} \psi^{\alpha}+\frac{1}{2} \Omega_{\rho^{\sigma}}\left(\delta^{\rho \sigma}\right)_{\beta}^{\alpha} \psi^{\beta}=\psi^{\alpha}(x)+\delta \psi^{\alpha} \\
& \delta \psi^{\alpha}=-\omega_{\nu}^{\mu} x^{\nu} \partial_{\mu} \psi^{\alpha}+\frac{1}{2} \Omega_{g^{\sigma}}\left(s^{\sigma}\right)^{\alpha}{ }_{\beta} \psi^{\beta}=-\frac{1}{2} \Omega_{\rho^{\sigma}}\left[\left(H^{\xi \sigma}\right)_{\nu}^{\mu} x^{\nu} \partial_{\mu} \psi^{\alpha}-\left(s^{\sigma \sigma}\right)_{\beta}^{\alpha} \psi^{\beta}\right]= \\
& =-\omega^{\mu \nu}\left[x_{\nu} \partial_{\mu} \psi^{\alpha}-\frac{1}{2}\left(S_{\mu \nu}\right)_{\beta}^{\alpha} \psi^{\beta}\right]
\end{aligned}
$$

As Lagrangiam is Loremte Imaniont: $\delta \mathcal{L}=0=\partial_{\mu} \mu^{\mu}$
As $\partial \alpha / \partial(\partial \mu \bar{\psi})=0$ we domi't care about $\delta \bar{\psi}$
The comsermed current is thus:

$$
\begin{aligned}
j^{\mu} & =\bar{\psi} i \gamma^{\mu} \delta \psi=-\omega^{\rho} \bar{\psi} i \gamma^{\mu}\left[x_{\sigma} \partial_{\rho} \psi-\frac{1}{2}\left(s_{\rho_{\sigma}}\right) \psi\right]= \\
& =-\omega^{\rho \sigma}\left[x_{\sigma} \bar{\psi}_{i} \gamma^{\mu} \partial_{\rho} \psi-\frac{1}{2} \bar{\psi} i \gamma^{\mu}\left(\delta_{g_{\sigma}}\right) \psi\right]= \\
& =-\omega^{\rho \sigma}\left[x_{\sigma} T_{\rho}^{\mu}-\frac{1}{2} \bar{\psi}_{i} \gamma^{\mu}\left(\delta_{\rho \sigma}\right) \psi\right]
\end{aligned}
$$

As $\omega^{\mu \nu}=-\omega^{\nu \mu}, S^{\sigma s}=-S_{\sigma \rho}$ we hove that: $j^{\mu}=\omega^{\sigma \rho}\left[x_{\rho} T^{\mu}{ }_{\sigma}-\frac{1}{2} \bar{\psi} i \gamma^{\mu} S_{\sigma \rho} \psi\right]=-\omega^{\rho \sigma}\left[x_{\rho} T^{\mu}{ }_{\sigma}+\frac{1}{2} \bar{\psi} \gamma^{\mu} S_{\rho \sigma} \psi\right]$
As both currents are conserved we com sum them to get a new comserneed current J^{μ}
Thus:

$$
\begin{aligned}
\left(\delta^{\mu}\right)^{\rho \sigma} & =\omega^{\sigma}\left[x_{\rho} T^{\mu}{ }_{\sigma}-\frac{1}{2} \bar{\psi} i \gamma^{\mu} S_{\sigma \rho} \psi\right]+w^{\rho \sigma}\left[x_{\sigma} T^{\mu}{ }_{\rho}-\frac{1}{2} \bar{\psi}_{i} \gamma^{\mu}\left(S_{\rho \sigma}\right) \psi\right]= \\
& =-w^{\rho \sigma}\left[x_{\rho} T^{\mu}{ }_{\sigma}+\frac{1}{2} \bar{\psi} i \gamma^{\mu} S_{\rho \sigma} \psi\right]+w^{g}\left[x_{\sigma} T^{\mu}{ }_{\rho}-\frac{1}{2} \bar{\psi}_{i} \gamma^{\mu} S_{\rho \sigma} \psi\right]= \\
& =-\omega^{\rho \sigma}\left[x_{\rho} T^{\mu}{ }_{\sigma}-x_{\sigma} T^{\mu}{ }_{\rho}+\bar{\psi} i \gamma^{\mu} S_{\rho \sigma} \psi\right]
\end{aligned}
$$

Note: Compared to the K-G Lagroungiam, the additional teton of $\bar{\psi} i \gamma^{H} S^{\rho} \psi$ provides the single particle states with internal anglian inomentaum $s=1 / 2$

We com write: $\left(\delta^{\mu}\right)^{\rho \sigma}=x T^{\mu \sigma}-x^{\sigma} T^{\mu \rho}+\bar{\psi} i \gamma^{\mu} S^{\rho \sigma} \psi$

Internal Vector Sym ymmenthy
Vector symmetry: Left and night handed fermions are rotated in same direction
Phase rotation of the spimor: $\psi \longmapsto \psi^{\prime}=e^{-i \alpha} \psi=\left(1-i \alpha+\frac{1}{2}(-i \alpha)^{2}+\ldots\right) \psi$
For small tramofonmonatians: $\quad \psi^{\prime} \approx \psi-i \alpha \psi$ and $\bar{\psi} \approx \bar{\psi}+\bar{\psi} i \alpha \Longrightarrow \delta \psi=-i \alpha \psi$ and $\delta \bar{\psi}=\bar{\psi} i \alpha$
It follows that: $j_{v}^{\mu}=-\bar{\psi} \gamma^{\mu} \alpha \psi$ or $j_{v}^{\mu}=\bar{\psi} \gamma^{\mu} \psi$
$\partial_{\mu} j^{\mu}=\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \psi+\bar{\psi} \gamma^{\mu}\left(\partial_{\mu} \psi\right)=i m \bar{\psi} \psi-i m \bar{\psi} \psi=0 \quad$ Thanks bo E.O.M.

Consumed Charge: $Q=\int d^{3} x j^{0}=\int d^{3} x \bar{\psi} \delta^{0} \psi=\int d^{3} x \psi^{+} \psi \Longrightarrow$ Electric Charge / Portide Number of fermions

Axial Samenmethy
Axial symmetry: Left and Riaght-homoted fermions are rotated in same directions ie. $\psi \longrightarrow e^{i \alpha \gamma^{5}} \psi$ and $\bar{\psi} \longrightarrow \bar{\psi} e^{i \alpha \gamma^{6}}$

It follows that: $\quad \delta \psi=i \alpha \gamma^{5} \psi$ and $\delta \bar{\psi}=\bar{\psi} i \alpha \gamma^{5}$
For small rotations: $\alpha^{\prime} \approx \bar{\psi}\left(1+i \alpha \gamma^{5}\right)\left(i \gamma^{\mu} \partial_{\mu}-m\right)\left(1+i \alpha \gamma^{5}\right) \psi=$
$=\mathcal{L}+\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) i \alpha \gamma^{s} \psi+\bar{\psi} i \alpha \gamma^{s}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi+\alpha^{\dot{\alpha}^{2}}\left[\bar{\psi} i \gamma^{s}\left(i \gamma^{\mu} \partial_{\mu}-m\right) i \psi\right]=$
$\approx \mathcal{L}-i \alpha\left[\bar{\psi} \gamma^{\mu} \gamma^{5} \partial_{\mu} \psi+\bar{\psi} \gamma^{5} \gamma^{\mu} \partial_{\mu} \psi-2 m \bar{\psi} \gamma^{5} \psi\right]=$
$=\mathcal{L}-i \alpha\left[\bar{\psi}\left\{\gamma^{\mu}, \gamma^{5}\right\} \partial_{\mu} \psi-2 m \bar{\psi} \gamma^{5} \psi\right]=$
$=\mathcal{L}+2 i m \alpha \bar{\psi} \gamma^{5} \psi=\mathcal{L}+\delta \mathcal{L}$
$\delta \mathcal{L}=0$ if $m=0 \Longrightarrow$ It is a symmeting of the Lagrangion for massless pontides

The conserved current is: $j_{A}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$
However, this sycmmenting bes mot suhnine the quantization process

Plane Wave solutions to Diroce Equation
The Dirac Equation is: $\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0$
As it is a $1^{\text {st }}$-order differential equation we expect a solution of the form: $\psi=u(\vec{p}) e^{-i p \cdot x}$
Do find the complete solution we most find $u\left(\bar{p}^{\prime}\right)$ which must:

- be a 4 -component spimon as γ^{μ} is a 4×4 matinix
- depend an 3-manentum \vec{p} as the energy (ie. p^{0}) depends an and \vec{p}

By substitution:

$$
(i \phi-m) \psi=\left(i \gamma^{\mu} \partial_{\mu}-m\right) u(\vec{p}) e^{-i p \alpha_{\alpha} x^{\alpha}}=\left(\gamma^{\mu} p_{\mu}-m\right) u\left(\vec{p}^{\mu}\right) e^{-i p p_{\alpha} x^{\alpha}}=0 \Longrightarrow\left(\gamma^{\mu} p_{\mu}-m\right) u(\vec{p})=0
$$

The Dirac representation is: $\gamma^{0}=\operatorname{anlidiag}\left(1_{2 \times 2}, 1_{2 \times 2}\right)$ and $\gamma^{i}=\operatorname{antidiag}\left(\sigma^{i},-\sigma^{i}\right)$
Therefore: $\left(\gamma^{0} p_{0}+\gamma^{i} p_{i}-m \mathbb{1}_{4 \times 1}\right) u(\vec{p})=0 \Longrightarrow\left[\right.$ antidiag $\left.\left(p_{\mu} \sigma^{\mu}, p_{\mu} \bar{\sigma}^{\mu}\right)-\operatorname{diag}(m, m)\right] u(\vec{p})=0$ where $\sigma \gamma^{\mu}=\left(1, \sigma^{i}\right)$ and $\bar{\sigma}^{\mu}=\left(1,-\sigma^{i}\right)=\gamma^{0}\left(\sigma^{\mu}\right)^{\mu} \gamma^{0}$

If we write $u(\vec{p})=\left(u_{1}, u_{2}\right)$ where u_{1} and u_{2} are 2 component spinons we cons write:
Dine Equation: $\left[\begin{array}{ll}-m & p_{\mu} \sigma^{\mu} \\ p_{\mu} \bar{\sigma}^{\mu} & -m\end{array}\right]\left[\begin{array}{l}u_{1}(\vec{p}) \\ u_{2}(\vec{p})\end{array}\right]=0 \Longrightarrow\left\{\begin{array}{l}p_{\mu} \sigma^{\mu} u_{2}-m u_{1}=0 \quad \text { (1) } \\ p_{\mu} \bar{\sigma}^{\mu} u_{1}-m u_{2}=0 \quad \text { (2) }\end{array}\right.$
We now evaluate the following: $(p \cdot \sigma)(p \cdot \bar{\sigma})=\left(p_{\mu} \sigma^{\mu}\right)\left(p_{\nu} \bar{\sigma}^{\nu}\right)=p_{\mu} p_{\nu} \sigma^{\mu} \bar{\sigma}^{\nu}=\left(p^{0}\right)^{2}-p_{i} p_{j} \sigma^{i} \sigma^{j}=\left(p^{0}\right)^{2}-\left(p^{i}\right)^{2}=E^{2}-\vec{p}^{2}=m^{2}$
It follows that: $(p \cdot \bar{\sigma})\left(p_{\mu} \sigma^{\mu} u_{2}-m u_{1}\right)=-m\left(p_{\mu} \bar{\sigma}^{\mu} u_{1}-m u_{2}\right)=0 \quad$ s.t. (1) implies (2) and vicenensa.

It follows that $m u_{1}=(p \cdot \sigma) u_{2}$ and $(p \cdot \bar{\sigma}) u_{1}=m u_{2} \stackrel{(p \cdot \sigma)(p \cdot \sigma)=m^{2}}{\Longrightarrow}$ Ansate: $u_{1}(\vec{p})=A(p \cdot \sigma) \varepsilon^{\prime}$ and $u_{2}=A m \varepsilon^{\prime}$ where A is a constant
Therefore, any spinet in the fonmon $u(\vec{p})=A\left[(p \cdot \sigma) \varepsilon^{\prime}, m \varepsilon^{\prime}\right]^{\top}$
To impose syanmethy we set $A=m^{-1}$ and $\varepsilon^{\prime}=\sqrt{p \cdot \bar{\sigma}} \varepsilon$
It follows that:
$u(\vec{p})=\binom{\sqrt{p \cdot \sigma} \varepsilon}{\sqrt{p \cdot \bar{\sigma}} \varepsilon}$ where ε is $2-$ component constant sponson sit. $\varepsilon^{t} \varepsilon=1$ and the state is mormonolised
Similarly, we con find solutions using the Ansate $\psi=v(\vec{p}) e^{i p \cdot x}$ which annost satisfy $\left(\gamma^{\mu} p_{\mu}+m\right) v(\vec{p})$
Therefore:
$v(\vec{p})=\binom{\sqrt{p \cdot \sigma} h}{-\sqrt{p \cdot \sigma} \eta}$ where η is 2 -componenent constant sponson s.t. $\eta^{\dagger} \eta=1$ and the state is monomolised
To determine solutionsome could also write the explicit 4×4 Matrix

Positive and negative frequency solutions
The termor of the kind $u(\vec{p}) e^{-i p x}$ which oscillate in tame according to $\sim e^{-i E t}$ are the positive frequency solutions The terms of the kind $v(\vec{p}) e^{i p x}$ which oscillate in time ne according b $\sim e^{\text {diEt }}$ are the negative frequeang soduticans

Examples of Plane Wove Solutions
Consider the case in which $\vec{p}=0$ s.t. $p=(m, \overrightarrow{0}) \Longrightarrow(p \cdot \sigma)=(p \cdot \bar{\sigma})=m$
The spimor solutions are:

$$
u_{1}(\vec{p})=\sqrt{m}\binom{\varepsilon}{\varepsilon} \text { and } u_{-}(\vec{p})=\sqrt{m}\binom{h}{-h}
$$

Lorentz transformation acting an $\psi: \psi(x) \longmapsto S[\Lambda] \psi\left(\Lambda^{-1} x\right)=\left[S[\Lambda] u_{1}(\vec{p})\right] e^{\mp p\left(\Lambda^{-1} x\right)}$
Therefore, a spimon $u(\vec{p})$ tromsformons as: $u_{ \pm}(\vec{p}) \longmapsto S[\Lambda] u_{1}(\vec{p})$

Rotations:
A rotations is represented by $S[\Lambda]=\left(\begin{array}{cc}e^{+i \vec{e} \cdot \vec{\sigma} / 2} & 0 \\ 0 & e^{+i \vec{\theta} \cdot \vec{\sigma} / 2}\end{array}\right)$
Therefore, the spinor fields are thamsformmed as: $\varepsilon \longmapsto e^{i \vec{e} \cdot \vec{\sigma} / 2} \varepsilon$ and $\pm \eta \longmapsto \pm e^{i \vec{\theta} \cdot \vec{\sigma} / 2} \eta$

In terms of particles, we cam see that the spimon fields describe the spin of the partide. In fort, in the Quantum Hechamiced interpretation, a particle (in this case a field, we are yet bo quantize) has spin up/dowm io a specific directions if the state (spinson field) is am eigenvector of the corrnespandimg Pauli Matrix and has eigenolue ± 1 respectively e.g. $\varepsilon^{\top}=(1,0)$ has spin up atom \hat{z} while $\varepsilon^{\top}=(0,1)$ hos spin down along \hat{z}

Boosting
Consider the spin - up state above
Now, boost it along x^{3} b a frame in which it has $p=(E, 0,0, p)$
It follows that: $(p \cdot \sigma)=\left(E-p^{3} \sigma^{3}\right)$ and $(p \cdot \bar{\sigma})=\left(E^{3}+p^{3} \sigma^{3}\right)$
As $\sqrt{\varepsilon^{\top}}=(1,0)$ it follows that:

$$
u(\vec{p})=\left(\begin{array}{c}
\sqrt{E-p^{3}} \\
\sqrt[1]{1} 0 \\
0
\end{array}\right) \stackrel{m \rightarrow 0}{ } \quad u(\vec{p})=\sqrt{2 E}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

Similarly, if $\varepsilon^{\top}=(0,1)$ we hove: (Note: eigemvole is - 1)

$$
u(\vec{p})=\binom{\sqrt{E+p^{3}}\binom{0}{1}}{\sqrt{E \times p^{3}}\binom{0}{1}} \stackrel{m \rightarrow 0}{ } u(\vec{p})=\sqrt{2 E}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Helicity
Helicity: Projection of any. momentum along direction of momentum
\longrightarrow Operator: $h=(\vec{P} \cdot \vec{J})(\hat{P} / P) \Longrightarrow h=\frac{i}{2} \epsilon_{i j k} \hat{p}^{i} S^{j k}=\frac{1}{2} \hat{p}_{i}\left(\begin{array}{cc}\sigma^{i} & 0 \\ 0 & \sigma^{i}\end{array}\right)$

By applying to $u(\vec{p})=\sqrt{2 E}(0010)^{\top}$ we get $h=+1 / 2 \Longrightarrow \varepsilon^{\top}(1,0)$ is Riant Handed
By applying to $u(\vec{p})=\sqrt{2 E}(0100)^{\top}$ we get $h=-1 / 2 \Longrightarrow \varepsilon^{\top}(0,1)$ is Left Handed

Imper And Outer Products
Define: $\varepsilon^{\prime}=(1,0)^{\top}$ and $\varepsilon^{2}=(0,1)^{\top}$
$\longrightarrow \varepsilon^{s}, \eta^{s}(s=1,2)$ forme a basis for the spinster $\Longrightarrow\left(\varepsilon^{n}\right)^{t} \varepsilon^{s}=\left(\eta^{n}\right)^{t} \eta^{s}=\delta^{n s}$
Therefore: $\quad u^{s}(\vec{p})=\binom{\sqrt{p^{\cdot} \cdot \sigma} \varepsilon^{s}}{\sqrt{p^{\cdot} \cdot \sigma} \varepsilon^{s}} \quad v^{s}(\vec{p})=\binom{\sqrt{p^{\cdot} \cdot \sigma} h^{s}}{-\sqrt{p^{\cdot} \cdot \sigma} \eta^{s}}$
Imeren Products
In previcious sections we sow that andy $\bar{u}(\vec{p}) \cdot u(\vec{p})$ con be Lorentz Immariont However, $u^{+}(\vec{p}) \cdot u(\vec{p})$ will be important for quantisation

$$
\begin{aligned}
& u^{n+}(\vec{p}) \cdot u^{s}(\vec{p})=\left(\varepsilon^{n+1} \sqrt{p \cdot \sigma}, \varepsilon^{n+} \sqrt{p \cdot \bar{\sigma}}\right)\binom{\sqrt{p \cdot \sigma} \varepsilon^{s}}{\sqrt{p \cdot \bar{\sigma}} \varepsilon^{s}}=\varepsilon^{n+}(p \cdot \sigma) \varepsilon^{s}+\varepsilon^{n+}(p \cdot \bar{\sigma}) \varepsilon^{s}=\varepsilon^{n+}[p \cdot(\sigma+\bar{\sigma})] \varepsilon^{s}=2 p_{0} \varepsilon^{n+\varepsilon^{s}}=2 p_{0} \delta^{n s} \\
& \bar{u}^{r}(\vec{p}) \cdot u^{s}(\vec{p})=u^{n+}(\vec{p}) \gamma^{0} u^{s}(\vec{p})=\left(\varepsilon^{n+1} \sqrt{p \cdot \sigma}, \varepsilon^{n+1} \sqrt{\rho \cdot \bar{\sigma}}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\sqrt{p \cdot \sigma} \varepsilon^{s}}{\sqrt{p \cdot \sigma} \varepsilon^{s}}=2 \varepsilon^{n+1}(\rho \cdot \sigma)(p \cdot \bar{\sigma}) \varepsilon^{s}=2 m \delta^{n s} \\
& \vec{u}^{n}(\vec{p}) \cdot v^{s}(\vec{p})=u^{n+}(\vec{p}) \gamma^{0} v^{s}(\vec{p})=\left(\varepsilon^{n+1} \sqrt{p \cdot \sigma}, \varepsilon^{n+} \sqrt{p \cdot \bar{\sigma}}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{\sqrt{p \cdot \sigma} h^{s}}{-\sqrt{p \cdot \sigma} h^{s}}=\varepsilon^{n+1}[\sqrt{p \cdot \sigma} \sqrt{p \cdot \sigma}-\sqrt{p \cdot \sigma} \sqrt{p \cdot \bar{\sigma}}] h^{s}=0 \\
& u^{n+}(\vec{p}) \cdot v^{s}(\vec{q})=\left(\varepsilon^{n+1} \sqrt{p \cdot \sigma}, \varepsilon^{n+1} \sqrt{p \cdot \sigma}\right)\binom{\sqrt{q \cdot \sigma} h^{s}}{--\vec{q} \cdot \bar{\sigma} h^{s}}=\varepsilon^{n+t}[\sqrt{(p \cdot \sigma)(q \cdot \sigma)}-\sqrt{(p \cdot \bar{\sigma})(q \cdot \vec{\sigma})}] h^{s} \Longrightarrow u^{n t}(\vec{p}) \cdot v^{s}(\vec{q})=0 \text { if } \vec{q}=-\vec{p} \\
& \text { Similarity } \\
& v^{n t}(\vec{p}) \cdot v^{s}(\vec{p})=2 p_{0} \delta^{n s} \\
& \bar{v}^{r}(\vec{p}) \cdot v^{5}(\vec{p})=-2 m \delta^{\text {bs }} \\
& \bar{v}^{t}(\vec{p}) \cdot u^{s}(\vec{p})=0 \\
& v^{\prime \prime \prime}(\vec{p}) \cdot v^{s}(\vec{p})=0
\end{aligned}
$$

Outer Products

$$
\begin{aligned}
& \text { Similarly: } \sum_{s=1}^{2} \omega^{3}(\vec{p}) \bar{N}^{-3}(\vec{p})=\not p-m
\end{aligned}
$$

Summary

$$
\begin{array}{ll}
u^{r r}(\vec{p}) \cdot u^{s}(\vec{p})=2 p^{0} \delta^{15 s} & v^{r r}(\vec{p}) \cdot v^{s}(\vec{p})=2 p 0_{0} \delta^{r s} \\
\bar{u}^{r}(\vec{p}) \cdot u^{5}(\vec{p})=2 m \delta^{n s} & \left.\vec{v}^{r}(\vec{p}) \cdot v^{(\vec{p}}\right)=-2 m \delta^{n s} \\
\vec{u}^{r}(\vec{p}) \cdot v^{(}(\vec{p})=0 & \vec{v}^{r}(\vec{p}) \cdot u^{s}(\vec{p})=0
\end{array}
$$

$u^{n+}(\vec{p}) \cdot v^{3}(-\vec{p})=0 \quad v^{n h}(\vec{p}) \cdot v^{3}(-\vec{p})=0$
$\sum_{s=1}^{2} u^{3}(\vec{p})^{-3}(\vec{p})=p+m \quad \sum_{s=1}^{2} w^{3}(\vec{p}) \vec{v}^{s}(\vec{p})=p-m \Longrightarrow$ Very important for things that do mot depend on s spin st. we meed to consider all spin contributions

Quankizing Dirac Field
The Dirac Lagrangian density is: $\quad \mathcal{L}=\bar{\psi}(x)(i \gamma-m) \psi(x)=i \bar{\psi} \gamma^{0} \dot{\psi}+i \bar{\psi} \gamma^{j} \partial_{j} \psi-\bar{\psi} m \psi$
The field satisfies the Diroc Equation: $(i \phi-m) \psi(x)=i \gamma^{0} \partial_{0} \psi+i \gamma^{i} \partial_{i} \psi-m \psi=0$

We con thus compute the hamilltomions as:

$$
\begin{aligned}
& \pi(x)=(\partial \alpha / \partial \dot{\psi})=i \bar{\psi} \gamma^{0}=i \psi^{\dagger} \\
& H=\pi \dot{\psi}-\alpha=\bar{\psi}\left(-i \gamma^{i} \partial_{i}+m\right) \psi=i \bar{\psi} \gamma^{0} \partial_{0} \psi=i \psi^{\dagger} \partial_{0} \psi
\end{aligned}
$$

As we hove already seem, the Dino equation allows for 4 different plane wave solutions: $u^{5}(\vec{p}) e^{-i p \cdot x}, v^{s}(\vec{p}) e^{i p \cdot x}, u^{r}(\vec{p}) e^{-i p \cdot x}$ and $v^{r}(\vec{p}) e^{i p \cdot x}$ The 4 solutions represent the positive and negative frequency solutions for spin up and down respectively
It follows that the fields cam be written as operators in the following way:

Heisenberg picture ie. $i \partial \psi / \partial t=[\psi, H]$

$$
\begin{aligned}
& \psi(x)=\sum_{s=1}^{2} \frac{d^{3} p}{(2 n)^{3}} \frac{1}{\sqrt{2 L p}}\left[l^{b}{ }^{s} u^{s}(\vec{p}) e^{-i p \cdot x}+c^{s t} \vec{p} v^{s}(\vec{p}) e^{t i p \cdot x}\right]
\end{aligned}
$$

Schnödinger picture:

$$
\begin{aligned}
& \psi(\vec{x})=\sum_{s=1}^{2} \frac{\frac{3}{p}}{(2 n)} \frac{1}{\sqrt{2 L} \vec{p}}\left[l^{b} b^{s} u^{s}(\vec{p}) e^{t i \vec{p} \cdot \vec{x}}+c^{s t} \vec{p} v^{s}(\vec{p}) e^{-i \vec{p} \cdot \vec{x}}\right] \\
& \psi^{t}(\vec{x})=\sum_{s=1}^{1} \frac{d^{3} p}{\left.(2 n)^{3}\right)} \frac{1}{\sqrt{2 E} \vec{p}}\left[b_{\vec{p}} \vec{b}^{4} u^{4}(\vec{p}) e^{-i \vec{p} \cdot \vec{x}}+c^{5}{ }^{5} v^{s t}(\vec{p}) e^{i \vec{p} \cdot \vec{x}}\right]
\end{aligned}
$$

The I signodifferemce in the exponents between the two picture is due to the metric

The summation over s ensures that ψ creates both spin up and down parties coltrespanding to the $v^{s}(\vec{p})$ spinet while it ammikilatis both spin up and douro porticoes associated with spimor $u^{s}(\vec{p})$. Vicenersas for ψ^{\dagger}

Explicit computation of the Hamillioniam:
In Heisenberg's picture we cam use: $H=i \psi^{\dagger} \partial_{0} \psi$
We know that:

Therefore the Hamillomion is:

Not Normal - Ordered: $H=\sum_{s} \int_{(21)^{3} p}^{3_{p}} E_{\vec{p}}\left[b_{\vec{p}}^{s t} b_{p}^{s}-c^{s} \vec{p}_{\vec{p}}^{s t} c_{\vec{p}}^{s}\right]$
Normal Ordered:

- Anticcocmonabation: $H=\sum_{s}^{s} \frac{\int_{p}}{(21)^{3}} E_{\vec{p}}\left[b_{\vec{p}}^{s t} b^{s}{ }_{\vec{p}}+c^{s t} c^{s} c^{s}-\left\{c^{s} \vec{p}, c^{s t} \vec{p}\right\}\right]$

Canonical Quantization
If we define the fields to be operations obeying canonical commutation relations we hove: $\left[\psi_{\alpha}(\vec{x}), \psi_{\beta}(\vec{y})\right]=\left[\psi_{\alpha}^{\dagger}(\vec{x}), \psi_{B}^{\dagger}(\vec{y})\right]=0$ and $\left[\psi_{\alpha}(\vec{x}), \psi_{\beta}(\vec{y})\right]=\delta_{\alpha \beta} \delta(\vec{x} \cdot \vec{y})$
Claim:

$$
\begin{aligned}
& {\left[\psi_{\alpha}(\vec{x}), \psi_{\beta}(\vec{y})\right]:\left[\psi_{\alpha}^{\dagger}(\vec{x}), \psi_{B}^{\dagger}(\vec{y})\right]=0 \quad\left[\quad b_{\vec{p}}^{r}, b_{\vec{q}}^{s}\right]=\left[b_{\vec{p}}^{h+}, b_{\vec{q}}^{s+}\right]=\left[c_{\vec{p}}^{r}, c_{\vec{q}}^{s}\right]=\ldots=0} \\
& {\left[\psi_{\alpha}(\vec{x}), \psi_{\beta}(\vec{y})\right]=\delta_{\alpha \beta} \delta(\vec{x}-\vec{y})}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \left.+\left[c_{\vec{p}}^{s t}, b_{q}^{n t}\right] v_{\alpha}^{s}(\vec{p}) u_{\beta}^{r t}(\vec{q}) e^{-i(\vec{p} \cdot \vec{x}+\vec{q} \cdot \vec{q})}+\left[c_{\vec{p}}^{s t}, c_{q}^{r}\right] v_{\alpha}^{s}(\vec{p}) v_{\beta}^{r t}(\vec{q}) e^{-i(\vec{p} \cdot \vec{x} \cdot \vec{q} \cdot \vec{q})}\right]= \\
& =\int \frac{d^{3} d^{3}}{(2 \pi)^{6}} \frac{1}{\sqrt{4 E_{\vec{p}} E_{q}}} \sum_{s, n}\left[b_{\vec{p}}^{s}, b_{\vec{q}}^{h+}\right] u_{\alpha}^{s}(\vec{p}) u_{p}^{h t}(\vec{q}) e^{i(\vec{p} \cdot \vec{x}-\vec{q} \cdot \vec{q})}-\left[c_{q}^{r}, c_{\vec{p}}^{s t}\right] v_{\alpha}^{s}(\vec{p}) v_{\vec{p}}^{r t}(\vec{q}) e^{-i(\vec{p} \cdot \vec{x} \cdot \vec{q} \cdot \vec{q})}=
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}} \sum_{s}\left[u_{\alpha}^{s}(\vec{p}) u_{p}^{s t}(\vec{p}) e^{i \vec{p} \cdot(\vec{x}-\vec{y})}+v_{\alpha}^{s}(\vec{p}) v_{\beta}^{s t}(\vec{p}) e^{-i \vec{p} \cdot(\vec{x} \cdot \vec{y})}\right]= \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}}\left\{\left[u_{\alpha}^{s}(\vec{p}) \bar{u}_{\lambda}^{s}(\vec{p})+v_{\alpha}^{s}(-\vec{p}) \bar{v}_{\lambda}^{s}(-\vec{p})\right]\left(\gamma^{0}\right)_{\beta}^{\lambda} e^{i \vec{p} \cdot(\vec{x}-\vec{y})}=\right. \\
& =\int \frac{{ }^{\frac{\beta}{p}}}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}}\left[(p+m)_{\alpha \lambda}+(\bar{p}-m)_{\alpha \lambda}\right]\left(\gamma^{0}\right)_{\beta}^{\lambda} e^{i \vec{p} \cdot(\vec{x}-\vec{y})}=
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}} 2 E_{\vec{p}} \delta_{\alpha \beta} e^{i \vec{p} \cdot(\vec{x}-\vec{y})}=\delta_{\alpha \beta} \delta(\vec{x}-\vec{y})
\end{aligned}
$$

Interpretation of commutation relationships and Hamiltonian
 This was justified by the fact that: $\quad c_{\vec{p}} c^{\dagger} \vec{p}|0\rangle=c_{\vec{p}}^{\dagger}\left(\vec{p}|0\rangle+\left[c_{\vec{p}}, c_{\vec{p}}^{\dagger}\right]|0\rangle=c_{p}^{\dagger}\left(c_{\vec{p}}|0\rangle+(2 \pi)^{3} \delta(0)|0\rangle=(2 \pi)^{3} \delta(0)|0\rangle\right.\right.$ i.e. the $c_{p}^{\dagger}|0\rangle$ state has a positive monk That is, in the scalar field case the interpretation of $c^{\dagger} \vec{p}$ as a creations operator ensures that there exist a positive moham porticle state

Howencer, in the case of the spimor field we hone: $C_{\vec{p}} c^{+}{ }_{\vec{p}}|0\rangle=c^{+}{ }_{\vec{p}}{ }^{c} \vec{p}|0\rangle+\left[c_{\vec{p}}, c^{+} \vec{p}\right]|0\rangle=c_{\vec{p}}^{+} \subset \vec{p}|0\rangle-(2 \pi)^{3} \delta(0)|0\rangle$
Therefore, if $c_{\vec{p}}$ is the ammihilation operator, porticle states hove megatine mono. We thus hove three options:

1) Accept megatine norm state
2) Negative mono state is umphorical, c_{p} is actually the creation operator
3) Reject the harmonic oscillator / canonical commutation relations

The commentators are: $\left[H, b^{s t}\right]=E_{\vec{p}} b_{\vec{p}}^{s t},\left[H, b_{\vec{p}}^{s}\right]=-E_{\vec{p}} b_{\vec{p}}^{s}$ and $\left[H, c_{\vec{p}}^{s t}\right]=E_{\vec{p}} c^{s t},\left[H, c_{\vec{p}}^{s}\right]=-E_{\vec{p}} c_{\vec{p}}^{s}$

From the commutations we cam see that $c^{s}{ }_{p}$ most be am annihilation operator. If it was a creations operator we would hove particles being created by emerge decrease and thus the Harmiltomiam would mot be bounded Gram below (No Vocaum?)! A negative mom state is also mot sensible, it does and lead to a sensible Hilbert space! we thus meed to reject this theory and find some new relations!

Fermiomic Quantization
The inconsistencies so far encountered are related to the fact that particles described by the Dirac Lagranojam are spim-1/2 particles (i.e. Fenmosionss). As we know from Pauli's exclusion principle, fermions wonefunctions ate amtisgymsmetric whit particle exchomog as mo two identical cam occupy the same state.

How does this reflect onto quantization?
When quontizing the real scalar field (ie. Bosons) mo real irocomsistencies arose from the use of camomical commutation relations The Bosomic quomtization allowed for $|\vec{p}, \vec{q}\rangle=a^{+} \vec{p} a^{+}|0\rangle=a_{\vec{q}}^{+} a^{+} \vec{p}|0\rangle=|\vec{q}, \vec{p}\rangle$ as $\left[a_{\vec{p}}^{+}, a^{+} \vec{q}\right] \Longrightarrow$ Symmetric w.r.t. exchomge of particles

However, we saw that this cannot be the case for fermions. Nonetheless, we cam mole two things:

1) Pouli's exclusion principle: $|\vec{p}, \vec{q}\rangle=-|\vec{q}, \vec{p}\rangle$ s.t. $|\vec{p}, \vec{q}\rangle+|\vec{q}, \vec{p}\rangle=0$ i.e. $\left\{c^{+} \vec{p}, c^{\dagger} \vec{q}\right\}=0$ or $\left\{b_{\vec{p}}^{\dagger}, b_{\vec{q}}^{+}\right\}=0$
2) Dino Lagrangian contains γ matrices which satisfy Clifford Anti-Comomutation Algebra

There are signs that fermions follow amk-comomutation

Spim-Statistics Theorem: Bosoms (Spion-integer particles) must be quantized according to comonsical commonutation relations \Longrightarrow Bosomic Quantization Fermions (Spim-half integer ponticles) must be quantized according to anticommuntation relations \Longrightarrow Fenmionsic Quantization

Bosoms:

$$
\begin{aligned}
& {\left[a_{\vec{p}}^{a t}, a_{\vec{q}}^{b t}\right]=\left[a_{\vec{p}}^{a}, a_{\vec{q}}^{b}\right]=0} \\
& {\left[a_{\vec{p}}^{a}, a_{\vec{q}}^{b+}\right]=\delta^{a b} \delta(\vec{p}-\vec{q})}
\end{aligned} \Longleftrightarrow \begin{aligned}
& {\left[\phi_{a}(\vec{x}, t), \phi_{b}(\vec{y}, t)\right]=\left[\pi_{a}(\vec{x}, t), \pi_{b}(\vec{y}, t)\right]=0} \\
& {\left[\phi_{a}(\vec{x}, t), \pi_{b}(\vec{g}, t)\right]=i \delta_{a b} \delta(\vec{x}-\vec{y})}
\end{aligned}
$$

Fermions:

$$
\begin{array}{ll}
\left\{b_{\vec{p}}^{r}, b_{\vec{q}}^{s t}\right\}=\left\{\begin{array}{l}
r \\
c_{\vec{p}}^{r}, c_{\vec{q}}^{s t}
\end{array}\right\}=(2 \pi)^{3} \delta^{n s} \delta(\vec{p}-\vec{q}) \\
\left\{b_{\vec{p}}^{r}, b_{\vec{q}}^{s}\right\}=\left\{\begin{array}{l}
c_{\vec{p}}^{r}, c_{\vec{q}}^{s}
\end{array}\right\}=\left\{b_{\vec{p},}^{r}, c_{\vec{q}}^{s t}\right\}=\left\{b_{\vec{p}}^{n}, c_{\vec{q}}^{s}\right\}=\ldots=0
\end{array} \quad \begin{aligned}
& \left\{\psi_{\alpha}(\vec{x}), \psi_{\beta}(\vec{y})\right\}=\left\{\psi_{\alpha}^{t}(\vec{x}), \psi_{\beta}(\vec{y})\right\}=0 \\
& \\
& \left\{\psi_{\alpha}(\vec{x}), \psi_{\beta}^{t}(\vec{y})\right\}=\delta_{\alpha \beta} \delta(\vec{x}-\vec{y})
\end{aligned}
$$

The Dirac Hoomiltomion is thus: $H=\sum_{s} \int_{\left(\frac{\beta}{p}\right.}^{(21)^{3}} E_{\vec{p}}\left[b_{\vec{p}}^{s t} b_{\vec{p}}^{s}+c_{\vec{p}}^{s t} c_{\vec{p}}^{s}-(2 \pi)^{3} \delta(0)\right]$ Feranions noccuum has megatine infinite energy?
We define a nocuum $|0\rangle$ such that $b^{5} \vec{p}|0\rangle=c^{s} \vec{p}|0\rangle=0$
We cam them redefine the Hamiltonian w.r.t. He nocuum emengg as: $H=\sum_{s} \int \frac{d_{p}^{3}}{(2 n)^{3}} E_{\vec{p}}\left[b^{s t} b^{s} b_{p}^{s}+c_{\vec{p}}^{s t} c^{s}\right]$
The operations hove commonutation relations:
$\left[H, b_{\vec{p}}^{n}\right]=-E_{\vec{p}} b_{\vec{p}}^{n}$ and $\left[H, b_{\vec{p}}^{n t}\right]=E_{\vec{p}} b_{\vec{p}}^{n+} \quad$ 朝 $\quad b_{\vec{p}}^{n+}, c^{n+}$ as creation operators

Particle states: $|\vec{p}, r\rangle=b_{\vec{p}}^{r_{1}}|0\rangle \Longrightarrow\left|\vec{p}_{1}, r_{1} ; \vec{p}_{2}, r_{2}\right\rangle=b_{\vec{p}_{1}}^{r_{1}+} b_{\vec{p}_{2}}^{r_{2}+}|0\rangle=-\left|\vec{p}_{2}, r_{2} ; \vec{p}_{1}, r_{1}\right\rangle \quad$ Fermin-Dinoc Statistics!
 Dirrec moliced Hat:

1) Schrodimger's equation is man-relativisitic as it is based ao the mann-relativisisic kimetic emerogs
2) Relativisidic theockices based an scalar fields do mot satisfy tolal probabibility comsemation

Lef's amalyre both problems sepanately

(1) Schrodingen's equation is mom- relativivisice

Nom-Relativisisic free particle (kimetic) enrengy: $E=p^{2} / 2 \mathrm{~m} \Longrightarrow$ Nom-Redatinustic $E q: i \dot{\psi}=H \psi=\left(\vec{p}^{2} / 2 \mathrm{~m}\right) \psi$
Relatinistic free particie (kimelic) emerggs: $\quad E^{2}=p^{2}+m^{2} \Longrightarrow$ Sch. Equation cammot be relationistic
(2) Second Onder lagrompianss do mod comseme probabibilty,

Schrödinggr's Equation: $i \dot{\psi}=H \psi$
Probabililys rate of chanag: $\dot{P}(t)=\frac{d}{d t}\langle\psi \mid \psi\rangle=\langle\dot{\psi} \mid \psi\rangle+\langle\psi \mid \dot{\psi}\rangle=\langle-i H \psi \mid \psi\rangle+\langle\psi \mid-i H \psi\rangle=i\langle\psi| H^{\dagger}-H|\psi\rangle$
As H is herminitian i.e. $H^{t}=H$ we have $\dot{P}(t)=0$ and probability is comsermed
Kleim-Gordom Equation: $\partial_{\mu} \partial^{\mu} \stackrel{\emptyset}{\phi}^{\text {complex field }}+m^{2} \phi=\ddot{\phi}-\vec{\nabla}^{2} \phi+m^{2} \phi=0$
Probability's rate of chanog: $\dot{P}(t)=\langle\phi \mid \phi\rangle=\langle\dot{\phi} \mid \phi\rangle+\langle\phi \mid \dot{\phi}\rangle \neq 0$ in gemeral

Dince's Approach

Diroc imposed recairements as the equation

- Hast be finst order ion time
- Hamellomiam muut be Hermantian
- Hamillanion mout be able to reprodice $p^{2}+m^{2}$ whem squared

He thaus morcified sch. equation as gollcas: : $i \dot{\psi}=H \varphi=[c \vec{\alpha} \cdot \vec{p}+m \beta] \psi$
$H^{2}=p^{2}+m^{2}=c^{2}(\vec{\alpha} \cdot \vec{p})^{2}+m^{2} \beta^{2}+c(\vec{\alpha} \cdot \vec{p}) \beta m+m \beta c(\vec{\alpha} \cdot \vec{p})=$
$=c^{2}\left(p_{i} \alpha^{i}\right)\left(p_{j} \alpha^{j}\right)+m^{2} \beta^{2}+c p_{i} m\left\{\alpha^{i}, \beta\right\}=$
$=c^{2} p_{i} p_{j} \alpha^{i} \alpha^{j}+m^{2} \beta^{2}+c m p_{i}\left\{\alpha^{i}, \beta\right\}$
The concolitian Hem are: $\alpha^{i} \alpha^{j}=\delta^{i j} \quad \beta^{2}=1$ and $\left\{\alpha^{i}, \beta\right\}=0$
These concitions canmot be satiosfied by mumbert bat anly by matrices: $\left(\alpha^{i}, \beta\right) \Longrightarrow\left(-\gamma^{\circ} \gamma^{i}, \gamma^{0}\right)$ where $\gamma^{i}=\left(\begin{array}{c}0 \\ \sigma^{i} \\ \sigma^{i}\end{array}\right)$ and $\gamma^{\circ}=\left(\begin{array}{ll}0 & 11 \\ 1 & 0\end{array}\right)$
It gollows tham that: $i \partial_{0} \psi=i \gamma^{0} \gamma^{i} \partial_{i} \psi+m \gamma^{\circ} \psi \Longrightarrow\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=(i \phi-m) \psi=0$ Dinoc Equation!

Imenpretation

Diroe denived the equation frome the siengle particle Hamilltaxiam and thus vievered it as ssach
Howerver we know it as a classical field that must be quantized
Im the interpretaticon of φ as a simgle particie state, the plame wone solutions are viewed as emengeg eigemstates
\longrightarrow Positive frequency solutions: $\psi=u(\vec{p}) e^{-i p \cdot x} \longrightarrow i \partial_{t} \psi=E_{\vec{p}} \varphi$ Posilise emerogy solution Neogative frequemay sodutions: $\psi=N(\vec{p}) e^{t i p \cdot x} \Longrightarrow\left(\partial_{t} \psi=-E_{\vec{p}} \psi\right.$ Negative enengy solution

The specthum of soluticons is ance agoim unboumbd fram below as the equation allows for megatice emenges soluticons.

 megatine emerggs states. The fally occupied megative enerengs stabes moke semse as if there were states avoilable posiline emerogs states would decay to megative emenges state. If there were imfjemite states onvoilable decay rate would be infjeinite (umacceptable)
The Direc Sea picture made a shocking prediction. Whem a megative emenges state is eaccited to a pasitine enerengs atate, a mole is leff behimed. The bole would hove same properties as the electrom, pasitice emerogy but opposite charge (i.e. posithom) as we remmoved a meoglive emeroge state with meogative chonge

smaller thoon that commot lead to poircreation
 "Dine Sea' of complelely folled emengys states
 Poritive emengeg states connod decay to these statas
 beccurse of Pouli's Primciple

Poir creation: $\gamma \longmapsto e^{+}+e^{-}$

Excitation of am electinom out of the nowum leods to the creation of a posithom

"Feymman - Stüchleberg Imknnpredalion"

Quamtum Field Theorgy Imentenpreation

Dirsc's intenpretation is mot completely correct. It is imcorrect to view the Diroc equation as a simogle porticle equation. Signos of this com be found in the
 the Dinoc Sea has too monng caveats
The correct imbenpretation wiews the Dince equation as the equation of a classical feeld φ with positive enenengs sodutions andy (His bounded from below)

Propagators
Fenmiomic Propagaton $S(x-y): \quad$ iS $(x-y)=\{\psi(x), \bar{\psi}(y)\}$
It follows that: $i S(x-y)=\left(i \phi_{x}+m\right)[D(x-y)-D(y-x)]$ where $D(x-y)=\int \frac{d^{3} p}{(2)^{3}} \frac{1}{2 E E_{\vec{p}}} e^{-i p \cdot(x-y)}$

Causality:
For spocelike iontenvals i.e. $(x-y)^{2}<0$ we have $D(x-y)-D(y-x)=0$
Thus:
Bosons: $[\phi(x), \phi(y)]=0$ if $(x-y)^{2}<0 \Longrightarrow$ Operabons alwayy commute autixide of lighticome
Fenmicons: $\left\{\psi_{\alpha}(x), \psi_{\beta}(y)\right\}=0$ if $(x-y)^{2}<0$
\rightarrow Why?
Awoy from simgularities: $\left(i y_{x}-m\right) S(x-y)=0$

Computations

$$
\begin{aligned}
& i S_{\alpha \beta}(x-y)=\left\{\psi_{\alpha}(x), \bar{\psi}_{\beta}(y)\right\}=\psi_{\alpha}(x) \psi_{\lambda}^{\dagger}(y)\left(\gamma^{0}\right)_{\beta}^{\lambda}+\psi_{\lambda}^{\dagger}(y)\left(\gamma^{0}\right)_{\beta}^{\lambda} \psi_{\alpha}(x)=
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{s h} \int \frac{\delta^{3} p p^{3} q}{(2 \pi)^{3}} \sqrt{\sqrt{44 p_{p} \xi_{q}}}\left[(2 \pi)^{3} \delta^{h s} \delta(\vec{p}-\vec{q})\left(u_{\alpha}^{s}(\vec{p}) \bar{u}_{\beta}^{h}(\vec{q}) e^{-i(p \cdot x \cdot q \cdot y)}+w_{\alpha}^{s}(\vec{p}) \bar{v}_{\beta}^{h}(\vec{q}) e^{i(p \cdot x-q \cdot g)}\right)\right]= \\
& =\sum_{S} \int \frac{d^{3} p}{(21)^{3}} \frac{1}{2 E_{\vec{p}}}\left[(p+m)_{\alpha \beta} e^{-i p \cdot(x-g)}+(p-m)_{\alpha \beta} e^{-i p(y-x)}\right]= \\
& =\sum_{S} \int_{(2 \pi)^{3}}^{(2 \pi} \frac{1}{2 E_{\vec{p}}}\left[\left(\gamma^{\mu} p_{\mu}\right) \alpha \beta\left(e^{-i p(x-y)}+e^{-i p(y-x)}\right)+m\left(e^{-i p \cdot(x-y)}-e^{-i p(y-x)}\right)\right]= \\
& =\left[i\left(\gamma^{\mu}\right)_{\alpha \beta} \partial_{\mu}+m\right][D(x-y)-D(y-x)]=\left[i(\gamma)_{\alpha \beta}+m\right][D(x-y)-D(y-x)] \\
& \left(i \phi_{x}-m\right) S(x-y)=-i\left(i \phi_{x}-m\right) i S(x-y)=-i\left(i \phi_{x}-m\right)\left(i \phi_{x}+m\right)[D(x-y)-D(y-x)]= \\
& =i\left(\phi_{x}^{2}+m^{2}\right)[D(x-y)-D(y-x)]=i\left[\left(\gamma^{\mu} \partial_{\mu}, x\right)^{2}+m^{2}\right][D(x-y)-D(y-x)]= \\
& =i \sum_{s} \int_{\frac{\beta_{p}}{(2 n \pi}}^{\frac{\beta^{2}}{2}} \frac{1}{2 \varepsilon_{\vec{p}}}\left\{\left[\left(\gamma^{\mu}\right)^{2}(-i)^{2}\left(p_{\mu} p^{\mu}\right)+m^{2}\right] e^{-i p(x-y)}+\left[\left(\gamma^{\mu}\right)^{2}(i)^{2}\left(p_{\mu} p^{\mu}\right)+m^{2}\right] e^{-i p(y-x)}\right\}= \\
& =i \sum_{S} \int_{\left(\frac{3}{3} p\right.}^{(21)} \frac{1}{2} \frac{1}{2 E_{\vec{p}}}\left\{\left[-\left(\gamma^{0}\right)^{2} p_{0}^{2}+\left(\gamma^{i}\right)^{2} p_{i}^{2}+m^{2}\right] e^{-i p(x-y)^{2}}+\left[-\left(\gamma^{0}\right)^{2} p_{0}^{2}+\left(\gamma^{i}\right)^{2} p_{i}^{2}+m^{2}\right] e^{-i p(y \cdot x)}\right\}= \\
& =i \sum_{\int}^{\int \frac{3}{}{ }^{3} p} \frac{1}{(2 \pi)^{3}} \frac{1}{2 E_{\vec{p}}}\left[E_{\vec{p}}^{2}-p_{0}^{2}\right]\left(e^{-i p(x-y)}+e^{-i p(y \cdot x)}\right)=0 \text { for an shell codcalations }
\end{aligned}
$$

$$
\left(i \phi_{x}-m\right) S(x-g)=-i\left(i \partial_{x}-m\right)\{\psi(x), \bar{\psi}(y)\}=-i\left(i \phi_{x}-m\right)(\psi(x) \bar{\psi}(y)+\bar{\psi}(y) \psi(x))=-i\left[\left(i \phi_{x}-m\right) \psi(x)\right] \bar{\psi}(g)-i \bar{\psi}(y)\left[\left(i \phi_{x}-m\right) \psi(x)\right]=0
$$

