
Tensor motation

Coraniant and Contranoiant rectors

Change of basis

Sog we have a rector spoce V in field FI described by the bosis Bold (V
, ..., a)

We con express new bosis rectors Brew La...,
al wht the old bosis as follows j=

sare the concimates of the juth new basis recton we wat the ithold basis rector s

A vector z in V com them be described by :E
As

j
= ai

,j: we hove
i

= jaijy)
That is : new A Zold on X = Ay

Consequence
T T

Bosis tromsforms as follows : WEAV where WEI, ...., and VIE
...., n

T

e . g., = a
115 + a5) and

2
= an,

+av

anas ond W =

:

, ana21 v,
A = S

2.
Av =

12922
.. s

On the other hand a recton changes as =A where I is the ith condinote in new basis while x are in old bosis

That is
,

avector transforms in the opposite way wint the basis rectors a... Contra oliant

Tensors

A tensor is denoted by a symbol and collection sub-super-scripts All vectors in euclideon spoce are contronomiant due to the metric being
Types : diog (1 ,

1
, 1)

· Tenson of Ronk-o scalan e .g O

· Tempor of hank-1 rector e . g. ,

M

· Tempor of homk2 tenson e . g. O ,
sis

Vectors

Types of rectors:

Contronationt M
,

AM, ...
i

. e. Column Vectors Similarly:

MA I
4 I

Thomsforms opposite to bosis rectors TIM = 12
-

3

B

· (x')" = 1xM on (x))" =()x This relation is volid for every contronancant rector

Coraniant
, Au ....

Thonsforms like basis

~ (t) = (1)! on (*) =) u
: This relation is volid for every conarant rector

Dot product: x x = X= x

Matrix products W= O in euclideon spoce

Knomecken Della

Sij =[ Sij = Ci =

xj
= v and * = n* = Su

Levi-Civita = S and =
c = a xb i . e

. ci = Ecjkajbk Ca Se,

S
· if repeated index E

123
= 3231 = 2312 = + 1

Eijk I if even permutation E321 = E213 = E132 = - 1

- > if odd permutation e .g. E 2
= 0
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Limits and Scales
-

Natural Units : c = h = kz = 1 [megy]= [Mass]= [Temperature]= Length) = Home]
- 1

-

[c] = LT
- 1

compton Wovelength : X=
[h] =

[G] = G = ((c) Mj = M! M Planck Mass

Planck Scale :

Mpf 10 GeV 200 . 109 100m Cosmological
egus Eonth constants

(p = 1033 cm 7 I I S

tp 18-4s 103eV 103eV

Classical Field Theory

E

~ spocetineele The field com be e . g.
E(x

,
t

,
(x , H , of Component

- .: We con menge this in a 4-Vector AMCF
,
t) = CO ,

E
-
(

,
t

Field (,
H 3 Vector

Maxwell's equations
S

E = - 58 -

6A =

= #x AB
& t

V . B = 0 = Ex E

Laghongian

Laghangion : LCE) = JLLOas Pal d Actions : 5 = (dx L

Laghongion Density: SCO, Pal Sa =(d L

The Cognongion Deme . depends on an abithany sec field ,
on its time deninotive but also on its godient instead of depending on q ,

as in classical dynorics .

Why is that the case ? Unlike discrete mechanics
, fields contain large numbers of particles Co continuous medium). As such

,
some properties will be

described by a gradient

In field theory L CE
,
E

,
30

,
... ) instead of L( , 9)

· Higher denivotives bring issues such as Ghosts which ore umphysical states

· While in phin .
we con deal with infinite deninotives

,
we tend to not consider infinite time derivatives as they moke I unbounded from below i .e. no bound state

Note : Logongian and Action must be incont under the Lorenz group operations li.
e. Lorente Innoncent

2 Aspects of a system
· Kinematics :

· Dymomics : How system evolves och time

·e
Principle of least action. A system will evolve occonding to the poth that minimizes the oction

i. e. SS = 0 when going from A to B



Application of Principle of Least Action

Action : S = fdxL where L is the Lagogon Density ↑
V

By principle of least action:

6 L ..
ss = (dx 52 = 0 St =

bo
Sp +8 )

(0)

Exploiting Multiplicationhabe we hove :

. (60) = Da - un so

Them
,

we can newrite the action as follows :

soAsall poths home fixed endpoints (i . e .
A

, B) at those endpoints SO = O

sofarine-N
-

SSo =

I Changes of the Cagnogion by a total deninative do not offect SS if SOASOB = O

=J-0 ). =
>

which is the necessary conditions for the new poth to connespond to the old poth at the end pointe

In onder for SS = 0 for all paths with fixed endpoints A
,
B and SOCAL = SQ (B) = O

, we need :

OL. C
= 0 Ealen Lagorge Equation"

b (20) 20

Example : Klein- Gondom Equation
Lagiorgion of a real scalan field : L =2 G 0 1 m

Apply Eal. Lag. Eg . wht O(X , t) :

32

20
= - m2 0

22

·(2) = Mono es +Il G + Gus= h

↳ = (M = 1

E
.
O

.
M : 1 + m20 = 0 - x20 + m20 = 0

For L = 1C -VCO) we get 10 + % = o

Example: First order Laghongion

consider the Lagorgon : CF (*) .o Y
We need to theat Y

* and Y sepanately as they home different dependencies due to complex conjugocy:

by = y + 84

by
*

= y*
+ 8y

+

8o = -Eq*
- m
* i

Jyx
= 24 - my

--*) -
*

Because of some index we get du co

6
= (C ) = (2 , -4) cam *

=Co , 4
+ G

:

6 L

+ y)
= - E i - voy

E.O
.

M for p : i
*

+myt - -
*

= 0

E. O
.

M for :-ip + my - 52 = 0



Example : Moxwell's equations
Phoca Lagnongion : C = - I (OAy)(CMAY) + (GAMSS
Notice tat :

GAy = Co, Ac Ai

(MA" = (60°+ A
,

60A + 6 A) = (80° - 6:A doA" - 6
:A

(6yAY) = (60Ad(00A) - (O Ao) (b> A) + (6:Ao(00A) - (6 Ad (GA) +

+ (60Ai) (00A) - (00A:) (6: A) + (b: Ai)(GA) - (GAi) (bA)
= 100 A30 - 100A +A- AhahahA A AS ANAN

· 2
= 188 - Ai - 5 to + Ai

(CAM)3 = A Al

The Laghongian becomes : C = 1 - A + A

Let's white the Lagnongian in a more useful wog :

< 6MA" = LM ( " BC
> Ap

L =-1 (GA)(GAB) + (hMB GuAp)

Let's exploit Ealen Loghonge :

C0
= O

Ma1 uß
& L

-

2 1 Ar (620A) + (GAA MAGCLAB) =

6 (6wAy)
=

I ( (
6 (bwAj)

=- S (A) + (A) s + (AM)M=

=-I (CA) +1 (GA) + (GAM) no

== (CAU) + (6yAM)nw

2L

O C(wAy)
= - AU + da A =

== Cw6AU + 20 AM =

= Cu (80AM) -Ow(bA) =

= (AM -S AU) = -Cu wi su as all ware controcted

Field Strengt Temsons it [1 ,
2

, 33

FASMAP SAM when FE andF FM O

FMF = (CMAY) (CAv) - (6*A) (GyAp) - (6AM) (GuAn) + 6 AM)(byAp) =

= (6uAr) + (byAp) - 2 (6A") (2yAp) =

= 2 : )

2 = - ↑ FFEB > C A )
= 2 FM - 2 FM = 4 F

*"

as FM= - FM
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Laghongian
Once you

have gown Laghangion, you com deline the equations of motion

The E. L. equations will be the some as a point particle but there will also be a terr depending on the spatial godient due to the presence of a field
While signs of theCagnongian might on the methic signature , equations of motion will not

The Laghongion is defined as L-T-U

ic2 c

= 8 p - ve . g. 6 =1 0 0 -Em= (0) -Em 1 = 6 by = h(Gyby = 18,1 n bi

T = ((x = 02

u = ((x[ =(0) + 1 m20

Applying E-L equations : -20 = -m20 i.e. #0 + m = 0

In onder to opply quantisation of the field we need to move from real spoce to momentan spoce

Change of basis through Founden Tronsform opplied to equations of motion

For a generic Laghangion : L =70 VCO) we getC = o

Hormonic Oscillators and fields : Check

Complex Scalan Field

1 = 2 (y+

i - j
+

y) - * * =p - my
*

y

La (4, 4*, 6Y , 64
*

)

Maxwell Laghongion
Am = (0 ,

5)

Field Strength :Far A FIATSAM

The field strength and AM ane Lorenz Innancont butI and I are not

2 = - 2(buAv)((
* AY) + 12 (GAM) Proca Lognongian

↳1 but no em i. c. no kinetic tem in o

In oddition, C has no term proportional to AAq AM ... no mass term Field quant has O mass

(6AY)(bpA") =

Moxwell's equation of motion : G FM O and LEFr



Locality
Lagrangian is local

Non-Locality: Events com influence other events immediately even though theyare very forog i . e. Every event is cosually conmected to previous events

Locality: Only events within light come one casually connected

There one no terms connecting two obitnang positions . . g. no terms like LG B OCCOLG
Closest more-locality given by gradient which conmects to S

Lonentz Immancance

· Lows of nature are relativistic i
. e. independent of imential reference frame

· Lonentz transformations include :

1) Boosts
0 8000

dst = dx* dxy = h(dxydxy = d - (d)

e . g. 1=~00 i
.c .

Boost along x-ocso (p = (87 ,)
# = (M) = 02-

2) Rotations -1000

Mocos-simbo
e . g. V

=

O sing costo
i.e. notation obout zoxie M ho 1"= = L

M

000 1.

Lorente thome fi * * sold field at the equivalent location in unshifted fromeI

O(A) 1 0'(x)
,

= '0(xx) Active transformation
shifted field at old position

Active thomsf : Transform field
Possive thomsf : Thomsform reference frome

Vector fields thonsform consoniantly on contronomiant wat basis rectons :

Contronomiant : AM)I A (NA)

Coroniont : Ap() CAYACNA)

Example : Kleim-Gondom Equation is Lorenz Innoncent

Applying Lorenz Tronsform to Scalan Field : OCAM CAMOCCY N
.

B. x is contronomiant

- 1
For the soke of simplicity we will write from now on : OCAL FOCG) where Ax

What about the deninotive S G is a cononiont quantity so it should thonsform just like basis rectors

That is: by 'CX) = - (A) on GAS C (G'(S) = (N (Gy(y)

Looking of the Kleim-Gordon Loghongion ↳ = 1000-1m we get :

L(x) 1 c L(y) = 2h(=) ( - = )Py(b
> 0)(60) - 2 m20 (y) =

=E (1) (1) ?, (620)(b(0) - =2 m203(y) =

= 24 (by0(y)(b0(B) - =m
=0 (y) = (y)

As Laghangion is Comentz immancant
,

to home action be inn . we need di whereA i . e. Jocobon 5 1

The Jocobcon will not be exactly but connection is weng teng c homent moncont connections are small and con be involont

e .g. g = x + 5x , Cy =S and 5 = det (Ce ) = 1 + 6
,
(SM) = 1

N . B. Not all Logogions are Lorenz immancant
.

For a Lorenz inmoncont Cognongian we need for time and space to be on equal footing a. .e.
All codices should be

controcted by means of Loneazio object such as . If Cognongian is innoncent them so is the action for mesons discussed abone

..g. First onder Loghongian is not Low in as it is limeon in time deminatives while it is quodiatic in spotial den
. Ca... No proper contraction

e . g.
Moxwell Lognongian is Lorenz in .

as all indices are contracted
. Check by doing AMCAS AACN)
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Noether's Theonea

Relates symmetries of Action (c
.

c
. Lorenz symeeting,

internal symonetines , Gauge symmetries, ... ) to conserved quantities
For every continuous seting of the Lagongon tere exists a conserved current I such that GIO.=

> Action?

N. B. Conserved canments imply conserved change Q
,

but conservation of cent is a stronger statement as it implies that change is conserved locally

Q =fxjos = =-fj = 0 assumingjo as() >

In a volume V :

Qu = /
,

dxjo > da =- x v5 =-fs Any changebearing I must beaccounted for by a 3-sector cument I out of A

Local Change

Proof :

Let's consider a tronsformation of the following type :

M , + SXM and al a Pat Xa where X a= SoO

In onder to preserve poth : X Catal X CXB) = O

The effect and the Action S and Loghongian Density Lane :

S 1 : S'ond 211 S

For this tronformation to be a symmetr of the action : SS = S (S -S') = O

By looking ot SS we see : SS =/dx SL

That is
,

SS = 0 if
· 52 = 0 (i.e. < is invoniont)

· SL = 6 F (i . e L changes bya total deninotive) as long as FM domishes at endpoints of poth

We saw when dehining the Eulen Logonge equations that:

Si =

62
Sat

-L
S(dal =

a

-Su So
6S

So = CF when a implies the at field a1
.

a
+ 0

, &(a)
la

60a 6 (by0a) C (20a

If Euber-Lognonge equations one sotisfied :

6S
SoSI = 0 Cal
/a = CqF C = 0 if J=0 a)

(0) -FM(O) Sum over all fields due to repected a index ?

Example : Transformation and Emergy-Momento Tenson

Consider infinitesional tronslations such as the following: " , (*) = x
*

-

* where = cost i
. e. Spotial and time translation

As x is a contronationt quantity and as a result it thonsforms opposite to bosis rectors

We com White SXM = X = -EM and xM = (x)** Plus sign because new dependence
of field is om +E i .e. SM= EMOld field in equivalentcom to x in new from ↓ i .e. Active Trasform

D · (XM) = 0a(x+ EM) = (M) + 00 =a()+ (MThe field transforms as follows : /CXMC Oaa

i. e. Oa(M) Oa(XM) + Xa(O) whene Xa(Q) = EMC a (XM

How does the Laghongian change ? Noether's Current:

L(0) : <(0)) = <(0) + (L(0) - L(0) (10/10) = Four conserved cunmentsa. e. one for each component of
M

= L(0) + (82/60)60 = (j"(x= ja) X a - F" =E as
Oua-EL

= 2(0) + (02/6xM) (6x*/60) 60 =

=gu

-

62
=L(0) + (0

(
L) (Cy0a) (E*Gal =

-

(2) -S = Energy-Momentum Tenson

= 2(0) + EM 6 L
-

i.e. SL = 6 (EML) = by F where F= EML As E is a coast . Ti is also a conserved culment i
.e. GT O

Action is symmetric cont troslations in spoce (Moon. is conserved The foun conserved quantities are :

and in Time (emengy is consenned E =f(x50 and pi =J Toi



Are example of the Emergy-Momento Tenson

:

Momentum
↳= Eh d 60 -2 m22 (+ = (*> -1 L emerge
Using eq. of motion one com phone by TM = O -100

Stress
E

.
O

.
M: 1 + 20 = 0 - 20 + m20 = 0 i. e. Do = - ma + M

= +io fl

+3

M = 26 - I 200 + hm=
↓ Momentum

= -E-ma
2

= -In (0) -ma

ST= (80)60 + CM (Gub) +1 (m (C -1)60 + CB (bub)
.

=

= (80)( + s* (6uby) + m26 - 60 (6" (0) =

= [(80) - 10] 20 + (* (Gubp) -60(bb"p) = 0

-
O

Conserved Quantities:

Emergy: E = ( x +
00

= (dx + (50) +m Time translation Symmetry 1 Spoce-time translation

Momentum: P=/to = (x ~ Spotial Translations Sgameting

N
. B. In this example IMP is setig (c.. MIL. However in some cases it asn't

Neventheless we con odd a new Tenson I SI that is onto smetica a..... exchange of the first two indices ..
.
e. I Sa

As a result GISM O and b O
,

where EM as the new EM teason TAG SA

66g + SM
= - Jubg/MS= - Gyby/M = - = &by TSM &by TSM= o

e .g. General relativity in Flat Spocetione EM=

2 6) gC)
-

g agr gara

Example: Lorenz Thonsform and Angulan Momentan

What conserved quantity do Lorenz Thomsf . corresponed to ?

What is the equivalent of notational symmetry?
Khomecken-Delta?

Infinitesional form of Lorent Thomsf..S wi where wi is infinitesional
Condition forCohentz Thomof. BN = · (S + w) not(s +w) =

OF O OT
=sho w wh + wh w
=

Mi
+S + wa stww =

= n + w + M +a

NAs w is infinitesional we hove : wh= o
O

MirThem for (Swot(stw) = I we need w+ wM =

w is anti-symmetric
There 6 antis X motrices which is equal
to the number of lorentz tronst (3 boosts + 3 notations)

As seem conliean
, O()) = O'(x) = 0 (1 X)

As Whe W we haveI = S -w and so , x -w

Sx = (x -w x") - x" = - wayx infinitesioal change

The change in the field is given bogi
600 = 0 + (0- 0) (AX/AX) = 0 +
by

Sx = 0 -wG or S = -wo



The change in the Logrongian is given by:

21 L' and SL = 2-2

L' = 2 + 52 = 2 + (2' - 2) (AX/AX) =

= L + 32Sx = C -w (duL)
52 = - wYx (0u() = by (wL) as w = 0 due to its anti-symmetry

Noether's Current

So = -w" buo
FM = - wYX"L

j) = whxL -

M 2 (2) O =-wh" where i = -SLCy 6(C
,

0) M

While this a single current
,

we are mone interested in the constituting currents (JSJ
,

one for each wi
As -WA we have only 6 uniquecatices and thus cunments

As &g CJSM = O we com them strip oway the WI common focton

(jS) = x TP or (JSJM = xT - xMTP

The conserved current for each (ISJ as given by (Jo
As a result the conserved quantity is given by:

QM = (23x(x Tx - x
* TY)

For A, = 1
,
2

,
3 the Lorenz transformations are notations QQE Ang.

Moon
.

For = 0 oh 1 = 0 the Lohentz thonsf . one boosts s QM =Q = Q
:0

What is Q0i ?

a = ((3x(x0 +
0

- x: + 00) do
-

0 = (ext + +by sto
- (

00
=

St
= Pi +t P 3x iTo

As P: is coast. we have a d xip-coast Center of emegy of field trowels at constant velocity

Internal Symmetries
So for we hove looked at thonsformations of spocetione and fields at the some time e .g. Lorenz Tronsform

However, there exists also Intermal Symmetries : Thonsformation of fields Cond not of spocetione) which acts the some at every point in spocetine

Example : Field Rotation Considerm Scalan Fields labeled by a
with some mass.

L = by
* (My - V((yP) The Laghangion is them :

Y edy > Sp = ix if ↳=1 Da- -g(0
*

↑ se p
+

< Sy*
= -ixy if 2 1

= 1

-
This Caghangian is immancant under mon-Abelion symmeting group GO(m) on SOC)

L · C' = (e)(e
=

(Guy
* (MY - V(141) = 2 SL = 0 For complex fields, we con construct Cagnongions that are invoncant unded SUCal

Loghongian is immancant unded this thonsformation
The conserved current is them : jM = i (SMY

* CY - : y
* (GMY) Non-Abelian symmetries of this type one known as global symmetries

A cute thick

consider on internal symeeting thonsformation of the kind SY- where- corst
.

N
.

B. If you workout on example
We saw corlieon that these thonsformations home SL = O with (1) you will see

Now
,

a <C(X) and SC =(C)h (0) = (h) - 2 ph such that S1 = 0 when <(1) = comst that only deninative terms

Them : contribute to ht

s = (di 52 = ( (h) - (d buh = -d() h N.
B. This works also for non-Ahelion

As SS = 0
, Juh = 0 i.e. h= Ja symmetrics but<(1) is not

a function but a mathix



Hamiltonian Formalism

Consider the scalan field (s a with Laghongian Density LCO , a ,
FOLLCA) (as depeacts on x

We define the Generalised Momentum conjugate to
a

as CAL = COSal

The Homiltonian Density I is defined as follows : C=(X)a(X) -L(X) such that H =JXCE
The equations of motion are given bys

GH
·(, H =g und (,=

-Sole,
Do not look Lorenz Invoniont !

N.
B. While Logogion formalism is monifestly Lorente immancant as Action is Lorent Immancant

,
the Homiltonion formalism is not as we home picked a preferned

time
.

Nometheless
,

all final onswers must be Coment Innoncent for arelativistic theory: We always home to check

Example : A real Scalan Field

Consider 1 = 102-1(0-V() for a real scalan fieldof

The generalised montuo is CAS =O

Homiltonian Density C = (AS - C =

3
-E + (0) + V(q) =1 + (E)+ VCO)

Homiltonion: H =( +(+ V (0)
As we sow corlier Emergy is conserved for this system and now we com see that the Hamiltonion is equal to the total emengy
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Canonical Quantito

Camonical quantization . Process to
go roon generalised condimates ad momenta lie. Hamiltonom formalism to quanto theory by phooting them

to operations
Ie . g.

Classical Denomics o a
da a N

. B. By allowingandIt to become operation we hoveB I

Must satisfy: Fa ,9po , pJ = 0 andE, separated x and I and thus lost thock of Lonente

Ironconce
.

All time dependence sits in the states

e . g.
Felda : OCesces

,
Ces (E) IPS whic evolve according to HIP

dt

Must satisfy: Ia , b = I
,

I = 0

-

O
=

!
.

L(a()
,
+(y = is(z- j) Sta

I -

field of two diff. These two determine the quantization
points

N
.

B. IP) is a functional i.e. a function containingall possible field configurations Why are fields important ? They provide

These configurations are mony as the fields home infinite degrees of freedom the conelation between two different

IP) is acted upon by O
,
I spocetione points from which

Free Theories everything con be delined

Determing spectru of H is typically weng hand as teme are infinite degrees of freedom
However

, in free theories one com white the dynomics of a system such tat all d
.o . f .

evolve independently
Free theories home generally Quodiatic Lagogians and limeo e . o . on

Example: Classical G equation
Classical Klein-Gondon e .

o
.o for scalan field OCA : CRO m = 0

We cor decouple degrees of freedom through Founder thomf Ca=COPPOCp
The equation becomes : ( (+my)O(p, H) = 8(p , t) + wp0(p , t) = 0

This equation is equinobent to a harmonic oscillator with
ang. freq ap = poi... dispension relationship

The most general solution to KG equation is on infinite super position of homomic oscillators with different momentum

As OCPI is a hormonic Oscillator X ,
to quantize OCAI we must quantize the infinite number of holmonic oscillators

The Simple Harmonic Oscillaton

Potential emergy: U (q) = 2kq2 = fo wax

Kimetic emengy : k (p) = 1 ma
Hamiltonions H =p a where ga and p = q with I , PS = :

We now define the hoising and lowering operations on/ creation and Yoochilation operator a alla p ,
at = C walq-is sul p

We com white : g = (2w) (a + at) and
g

= - i(w()(a - at)

Exploiting these relations we get. I,
at = 1 as IG , p = qp

- pq = i (2) a (at at + a
+
a - a + (at) a at + a

+

a = i aat a ta. = i a
,
at = c

Them : q= (2w) P + (at) + act + a
+
a p2= - (w(2) [a? + (at) - aat - a

+a)

H = f w(aat + a
+ a) = 2w([a , at + 2a a) = a(a

+
a + 2) Look at invented homoonic oscillator

2

IH
,
at . = Hat - at H = w at (aat) + fat cata - a = waaat - ata = wat

[H
,
a . =

Ha - aH = w a t (a)+ fa - aa
+
a - fa

.

= wa-a a = - wa

Let IE) be on eigenstate of H such that HIE) = EIE).

Them : HalE) = ([H ,
a

.

+ aH)(E) = (E -w(a/E) = (E-w) where IE-w) = alE) i.e. omnihilation
op

HatIE) = (IH,
at] + atH)(E) = (E +w)a+

(E) = H/E + w) where (E +W) = atlE) i.e. creation op.

If emergy is bound from below we hove a ground stateIEo such that lat = Cat Ed and HIE = EclEo and HIEmS = (+2) Em

Be owone that Int states one not get normalizeda
.e. LEES En



The Free Scalan Field

We wont to apply these concepts to CEL and I CE

The solutions to the classical equation are two plane wone solutions : CP, =A + B (Where did the mass go?

We com thus White O() ,
(F) as on infinite sum of harmonic oscillator states as follows:

P(x) = (d3p(2π) qcip
: x

e ept pe
ee

cp +#(E) = (d3p(2π)
3 peip

: x
-

ape
ipx

-

Note : S(E- G) =(e (

Equivalence of commutations

Claim
- -

C I a= Da() , b(j)_

= Ila(e)
,

#P (j).

= 0 ap, !. = a
p ,aq = 0 We have to show this claim holds from left to night-

->

([0a(E)
, iP(jj). = iS(E- 5) Sab Fa ,bat = (2H)36(p - q Sab and from night to left

Right: Left

We com denive some commutator relationships from their definition
=ap] = - 1b +,apJ a paraga As ab and are just labels and the involved operators are the some

, switching themaround doesI
-

aa
b A-a + pat] = a] = ata-ata not change commutato. Them: Fa, I = -Fac. I p, I = 0I - Tata-

G p ->
, 9

b A-Tat->Fa = q , ap= ap a
+ a ap > As operators one different , switchinglabels might affect comutator

-

Them
,
I p, S =I tas = 0 which holds with our claim

Nowlet's check whether Eas bat = (2) S(-)Soholds by explicitely computing IPCC, CGS

-

-
->

Il
b

-> A
l I I

-

b Ib +

-> -

A
->

-

A Ieiß ipei
-age-i.

=

- -

-eig.

=

- age
-9

-

j)_

=(da win
e p

-

·

eiß e =I O(X)
,

-

C
b +

ag
Y

ap

-

= Japa1 o

e (a- expli(p. ) + i(yy I A b t
->.)

-

- ap , ag]exp
=

i(p. ) - i(p. 5)
.

+
-

a b a b t+
+

= I s[- i(.) - i(q-y)] =

-

ap , ag]exp =i(p. ) + i(p. 5)
.

- 1 a! ,
a

9 ex/

=Ja w la, el a e ) =
=da un -a sei (9

: 5- p:)
+ S(p- 9 se( - p - j)] =

->C ->C

O
-

- sadpi e(),e(- s bS(-G) + f(- 2). = is: s(E- 5)

We have proven that the abone claim hold from night to left.

Left: Right
With labels angament we con easily show: PALES, (L = INTECES , C

-

(yWe now have to phone that Ias, t
.

= (2) S (p- /S using [0() ,
1)

.

= i8(-G)Sub
9

For this we need on expression of a p , at in terms of O(E)
, (E)

We hove that :

↓ benoming to make it shorten

p(x) = (d(d())0(x) = (2π)3(awp)" =apeip
:

+ at -ip
.x
and p() = (d()(x) = (ME) (a) ai at

-ip! x

ap = (1/2)(2π)3(zwp)
=

Op (E) + i w] πp()) e
-i=

P
-

l -

at = (1(2)(2H)3(2wp) = Op() - iw πp()-

e
+ p.



Left s Right
Let's look at the structure of O and

p
-3 C3x

Op = (2) (p') pip
> x where (= /X OCEP Op =iI I

- 13 -(E) e

-i- x
L O

(21)

#p = (2π)3π(5)eip-
where (p) = ((xπ()e

-ipe
> p= eip= (d(3 T() e

-i

Them we com white them down as:

(E) + iw] πp()
-

c

- ip.=
= ((x wp/(x) +

i
Il e

- ip=
ap = (1/2)(2π)3(zwp)

=

0
P

> ap
-
20

+

2Wp
(x)

O-
i

Il e
-ip.

at = (1/2)(2H)3(2wp) = Op() - iw πp(x)
-

e
+i
-a = epgdx

-

wp /(E))
-

(E)
- 2 2Wp

5. y
As in= Jy S (E-5) (2)

=

we home :

ap = ((x ap0(E)+ (1)
.

e
-

/(E))

2Wp
↑

e
-ip.at = ((x wpo - 2wpπ()2

-

Wp
O t

i
C

-
.5)

t
I

(e
+.g) i

(a() , (G),e
(p.E-2.5)

(5).

- i(p. - q

capat I pa , O
PE

2 Wa 2 waa() , o
2 pw
[a(), b (5)

.

Z

-i)
+

.5)
-

.

g
= ((x(y()) wa() , πP(y

5.- q

wa-a() , Obly e
-(i.E- ig

+

))O e t -)
-↑

-

)
.

t
.g S

-

= (Bxdy(2)) = ib(-g) sabe- (pE= a =
+ c6(g-=)jai(p - p.())b C

=fax e(
- 5).

sab = (2)S(-G) Sab

Similarly, exploitingIQ,)] = 0 we con phone [a ,a) = 0

The Hamiltonion

For the Laghongian density LEGO VCO) the Homiltonian is given by H=JCXEVCOS
We also home that :

d
+

+ +
e①(x) = J )2wp [ae a

-i
P

3
2 -

apeip). - +pe
-ip

π(x) = 1 )
( - i) up

-

O() = (B i(zwp)-apei pei-

-

a

it . =
- ats

-i
+.

(x)= (D (i) wap-e e wp -

S

9

9
(- i) qe

9
e

+
=(da (1) pugäpä ei(+ 5: )e apat ep-i - a age

(...)
+ a ate()u

i d3 it. i
t.

(0) = Se i(zwp)apei pe I 9 i ( 20p)a =
+29 -

++
-

> 59 =
3(2π) 99

A

9 I -

9
-

= Jo16
(i) p. =

a age
- :(p.- q. =)

+ a atei(
2 pwa

- appei(. + q.)
- apatep-i

If VCO) = m we hove :

->).
-> E

(- q t=Jp wage(pat age a
&

+apat e
(p+5) .=C ->

->

Them :

t(E) + (0) =_ pag +Page() e) a e ( -5
-

aage
-i(p-5).

=

i(p+q
I (=_J e wgpwq +p:q.[, + agape

+.
+ ([a ,

a+q + a pa! e (+5).
-

-
(a,a) + apap)ei(p-5).

+ (latag] + agap) e

i (p-5) .E]



As a result :

E =

π(x) + (0)
?

.

+ V(0) =(da -

2
+ wpwq + p.q((ap ap

-

aga
- [ap,ap)e

+5) . =
+) a - aa -I,a]) e

- i(p + q). +M O

WpWq
-

+ (atpaq +a + ap , ))e
(GS. E

+ Capagap tap ate =

= a m wwa -( , ae) , (
+ 2 pe() apape( (2)+ 2

= mtwpugt.
a

ei(p- +a e( )-

p Wa

The Homiltonion them becomes :

->

H =( a Im-Wpwa-e
- a ei(- 9. + age(p

-9). =->

WpWq

->>
I

=

ImWpwa-1 re
- apatp(2π)36(p- q) + a

+ paq(2π)3S(p-q)
.

=

WpWq

= ( P
Im+ wp

·a + a a =

Up

I 2)2
- p

= /ap In ue 2ata + =a,
a

+

p =

=

=

Wp

2)
= (P 2 (mu =ata + (2π)3S(0)

Wp

= (d 3 (4wp) atap + (2π)S(0)
.

I forgot a factor of y
?

Mistoke

The Hamiltonion H = /P patap(S(O) not onlyhas a delta function but it also diveges as ps ,
what to do ?

This is a delta function that evoluate at eno (where it is a ps



Vacuum

Assume that energy eigenstates are bounded from below by nocuo state IOS with emeng eigennolue to such that a p IOS X ps
The emerg con be computed b meons of the Homiltonion operators

I
-

H10) = Eolo= ta + E(((0).:

= (d-aa-

10 + S(0), 10) =

-

= (dp (p 3(0)
.

10) = o (0 > Ec = A

In the above expression there actually two infinities present :

· Infla-ned divergences amising due to the infinity of spoce Die Long wonelength divergence
consider the volume of a box of sides L : V =/ and when La I

2

ip
! x

c
= (2π)3S(0) = xV = lim x = line se

-Le LCD - 212 p = 0

We con odjust for this by computing energy density Co = EoV = I p

· Ultra-violet divergence orising due to the breok-down of own theory ot high p li .e .
Short distances

, high frequencies)
Monifests as E i as (pl o

There's a way
to deal with this infinities by considering that in physics we only measure emengy differences li.e. we do not cosure Es directlyI

We com thus herop the Homiltonon HIYS HIYS E i .e. by toking nocuum as reference

The Homiltonian thus becomes : H=C p paps

Normal Ondening · useful to extract finite pont of infinities
The obone Homiltonian is menely the result of on ondering ambiguity tot onises in the quantization of classical theonies

.. g.
H = (2) (wq-ip) Laq + ip) upon quantization naturally gives H = wata

We define a string of operators Q... On L'al to be normal andened when all onihilation operations are to the night while all creation operators are

to the left e
. g. H :I at

pap

Example : Cosmological Constant See Tong
Example: Cosmin Effect

Using the normal ondering prescription to com be set to E G O
.

However, in some situations we are interested in meosurcing differences in fluctuations of the

nocuum emergy. This is the case of the Casimin Effect

To consider this effect we con consider a massless scalan field OCAS on which we impose the bounding conditions O (AP) = QXXLE) .
This allows as

to ignone the inflained divergence coming from the direction as its size as restricted to I and thus momentum pas quantized. As
g

and I are unaffected,

emengies and other related qualities must be computed per unit area

We will now consider the situation in which two ponabled plones separated bydistanceL in are embedded in the scalar field or such that

(1) = 0(X2) = 0 Where
,

and
2

one the locations along of the two planes

Inside the plones:

The met effect on momentum is the following : p' = (d , Py , Pz) ,
me It

As we are dealing with a massless scalar field:

wp = (pl = (n
+ )p and H= pa 128 (0) ,= piatap+ (2)5)

We one interested in thenocuo emengy i .e. Eold Cup (a) [CSCO)
-/2

ip!XAs A = bin e dz = inseen
-bydz = (2)S(0) we hove E(d) = Fold)/A= dz ( pae



Them :

· Emergy inside the planes: E (d)

· Emergy outside the planes : E (L-d)

· Total emengy: E = E(d) + E(L- d) If E depends on a
,

vocuum energy has fluctuations and thus there is a force on the plates (Cosion Forcel

The dependence of E on d is impossible to find as E is infinite due to the UV divergence. However, one com realise that high morentun frequency
woves connot be reflected by the planes as some points of the wore would

go through .
We focus on completelyreflected wores by introducing the UV cutoff worebength

a such that a d
.

We ortificially monipulate the integral as follows:

Eo(d)= e e that if a so we regain the original expression but if a o
,

the integral becomes finite by cutting pa

In onder to home a monigful result
,

a should not oppeal in the final result

Let's consider the case with 11 dimensions instead of 3t :

E(d) 1 E(d) =2
By introducing a we get : Eld)=

-amod
me =

== 1e -am/d
=

I

-- atee-and-
= -16dz 11 z

=

== 2) - , =)(- (

= z2) =

Z
=-d (1 -z)2

where z = e
-and

As ad 1
,

zv1

However FCZ) = Ez has a pole of onder a

We thus need to expond using a Laurent sences : FCELEZ wherea s



Porticles

As IN
, ap = patp and IH

,Ilap we hove that IpatpIOS and HIP Wpp
We con interpret Ip') as the momentum eigenstate of a single particle of mass on as Expo Ci. e. Relativistic emerg

: portides are created by disturbing the nocuum .
This effect couses the application ofats type of portile depends on at ond thus fields

The monenti P (See E-M Tempor com be turned into an operator as follows:
I

-ip?π(x) = 1 3
(- i) P

ap
e._ e

2 -

iO() = Ja i(zwp)aspei I
=

-

- D

π(x)50(y) = ) da wi, age agepet (ape(pe-gaage(p
: % +al

-

S 9

wa 9
.
apaq

e i (p + q) . x
+ a

+

patpe
= (p+ q) .x

(ap at
q
e (p- q . =

-

=p = f(xπ(x)(x) = 1) xpe p
-

+atpagei(p
= 4. 1

Ups-
=- 1 pee

wa !
> tap ag atp ap)f(p+ q) - (apap + a

+

pap)6(p'- q)
.

=

= 2)1 3 p
Pap

a
. p

+ at cat
p

+ ap c
+

p
+ a

+

p ap
=

>
J A= Ede a pa- p

+ a
+

p + (2π)3S(0) + 2a
+

pap3 I
+

p
I I

As p Cappatpatp) is ontyscometing wint p c-p le. odd (ppCapa p
+ a

+patp) = 0

D C >

DAs a result: 1= 12/d pS(0) +J I a
+

p a
-p3

Applying to 10 : PIOS =/SCO)
.

10S

CThem
, often normal ondering: p=I p pa. pA

Silarly,
we con get the ongular montuo operation from the EM Teason :

(JM(98= xS +
Mo

- x0 + MS

j = Q = ((x(xi +8j
- xj +oc) = (bx(59) = gijk((3x (59jk

Applying the operatorIon the single particle states Ip's we get P = p'Ip i
... I p has momentar p

Applyingthe operator Jon IPOL , IIPO = O i.e. Quantitation of scalan field gives hose to particle with internal ong. morn (Spin) e no

Multi-Particle States

A multi particle state is a state created by the action of multiple atpi... on poticle state : I p ..., Pa = a
+

p ...
aPOS

As Iap, at = O Ap,GER , Ip, = 1q, p and the particles are thas (spin-of bosons (Sgometric w.f . for p=q)

tThe Hilbert spoce related to a scalar field is known as "Fock spoce" and is sporned by all possible sul particle states i . e. IOS
, atpIOS , pa IO, ...

The Fock spoce con be viewed as the sum of all - particle Hilbert spaces Cas ol se
. generalisation of Hilbert spoce to infinite particles

The number of particles in ony given state is given by the number operator N = Sat ap which cotefies N p...... pint = alp, ,..., pa

The number operator commutes with ne theories) homiltoncom a .e. IN , HI O and in free theories particle number is conserved as theme one no potentials/ interactions

On the other hand
,

once interactions oneintroduced particles con be cheoted destroyed

Fock Spoce
m'-Sector

&-SectorFree
Internation

(subspoce?)

T



Operator Valued Distribution

The particle states Ip' are montuo egestates but not position eigenstates ad thas not localized
ember Heisenberg's Uncentinty Principle

This due to the fact that no momentum or position eigenstate con be normalized i
. e. Lolapatos = < p (p) = (S(O) E COLOCCASIONIS = SCO)

As such,
, ap and OCA) are not good operators on the Fock spoce .

We con construct good ,
moromolizable states by considering the superposition of multiple Ip' states i .e. the construction of a core pocket ICAS

Viewed from the point of view of IQCXL this as its founded decomposition in constituting Ip's states

↑(1) = (c (34(p)(p) e-ip: where (P) is responsible for the monolization e .g. P(p = e-22 S .
t. JEMYSP = 1

</=(9 (94(p) p
(p=q /(U(p) =(2)<-<010 e ( ). EJ ABlY(P(010 =

Relativistic Normalization

From thenocuum state IOS we construct the single particle states Ip's atpIOS
As IOS must be normalized we home : COLOS-1 and SPI CRSCp which is a when p'zq but zeno otherwise

Why < p"(q) = (2π)3S(p-5) ?

(p(q) = a
+
p (0)(a

+

p(0)) = 70lapatp(0) = <0 ata
p 107, + [ap,

a
+

p= (0(0) = (2π)3S(p - 5)9 I

O

Are these normalization relationships inmoncont?

Momentum Lorenz Transform p CP My s
.
t. p pr

Ideally ,
we hove : p()) (1p" = U(A)(p s .

t. < p"(p") = <U(A) p>( U(A)p) = < plUTUlp = < pp'

However, if p is not moro: Ip < X (p, pl) p' i
. e. < /Xp") needs to be equal to < plp's

We wont own momentum state to be normalized in onl from i .e .
we wont p to be Lorenz immancant

However, prond pane 3-vectors and in general SCP SLPl where , ane the transformed 3-rectors

To find a normalization that is frame involont we consider the Cidentity) Projection operator .

Scalon cinmaniant) quantity : 1= I p 19 =(1)

While it is concent as a whole
, I p and IPL are not while dip and SCOC are

Thus the combination da SCO must be Lorenz immancant
. It follows that :

Lonente Inn
.
Int . JS(0) = (PS(pp-o2) = 13 poS(p3 - p- on") =

PO

= Jas(3 poS(p-E propospo-Ep) + SpotE)
.poi

.

Lonertz Immoriunt
3

(3)
Note : As SBS = 1 we have that IBP EPS (p- 5) is also Lorent invoniont

2E

Consequence: The Lorent Innaniant Dinac Della function is ZEBSCPEC such that the relativisticallyimmancant nonalization is given by
< p(q) = (2) (2)S(p-G ) where the relativistically monomalized state one Ips = CERIP CER a Os

CThem: 1 = 31 (p1 = 110 Espl



Complex Scalan Field

Consider a complex scalan field UCAL with Lagogon density Le G *-MY
A complex scalan field con be written as a limeon superposition of two real scalar fields O, O. As two Q ,

to equations of motion

· Y(x) =(x) + i02(x)
.

/ 2 · Theat P() , 4
*
(X) separately

·
*

(x) =

=

0, (x)) - i0f(x))/2 -

The equations of motion are :

· by y + My = 0

· Cyb**
+ My

*
= 0

These result into the following definitions of the fields and conjugate momeoturns

= y
+

=i

N
.

B. As Y and Q
*

are not real
,

the fields and momentum are not heronition a.e. bac

Commutation relationship

[P(), Y (5)] = [y() , 4
+

(5)] = 0

Consequences
The quantisation of complex scalar field gives rise to two creation operators ot

,
C

, one for everg scalan field.
Each of these operations connespoonds to the

creation of two types of particles ,
both with mass M and spin-o .

However, these particles correspoond to different fields and thus home diff. quantun number

These two porticles are labeled as particle and antiparticles .

The conserved changes QFICO-CI-YEA=Cb) = NC N Comes from Internal Symeting
N = Number of particles created bactC

No Number of onti-particles created by bot

In free theories Nc
, No are sepanately conserved but in interaction theyare not

.
Nometheless

,
in both cases Q is conserveda

. e. I , QI



Heisembeing Picture

In Schödingen's picture , operators such as OCAL and CAS are not time dependent but the states IPLEL EPIp ane
.

It as does not evident that results denined from the Lorent immancant hemain invenient often quantisation
However, the Heisenberg picture mokes Lorent Innoncance more monifest

Heisenberg Picture

In Heiseabeng's Picture
,

come dependence is assigned to operators and not to the states

An operator O con be defined Heisenberg picture Ci . e. Of in terms of the Schhodingen's picture operation Os as follows . Of HOTE
-iHt

0 = ec Ose
-

GHJ iHt -iHt -iHt
O 2 =8 = 8t +

s + sHe -S

-itt giHt + o C Ose + eito ne
- -

=i H +0 H
+ eiH + COs - iHt

-O H ++ = H , OH + ECHtCOS GitJ +
e

In QFT
,

we lift the subscripts S and Hi foron of labling operators in Schnodinger's picture by x (Position 3 rector) and operators in Heisembeng's picture by
xM = (*

,
t) (or simply ) i. e. spocetime position.

It follows that :

Schnodigen : OCAS Heisenberg. OCALOCA,
ES HOCASHA S.

t
. 0 (A

, 0) = O(x)

Schnodigen : ICAS I Heisenberg: CALFICA = EHCAG s .
t
. # (x), 0) = π (x)

Commutation Relations

·(t) , O (te) ete serite itgite gittegeitsittegitne ete ga iltetelgeitzeitte gas ei(te-ta)jite
S

If t = +2 : =0 (t)
, Os*(t

.

= ett =

0 ,0-it = Os,O Commutator Relations at equivalent times are te same as in Sch.
Picture

Them :=(,
t)

, b(y,
t)

.

=I (,H
, (,

t)
=

= 0 = Pa(it) , b(,
H

.

= iS(x y) Sab

Evolution of the fields
Consider the scalan field. O and the related Hamiltonion Hel CAPOCAOCA

.~

For such a scalan field we know that the it must sottof So =0

As OCALFOCXE we con now studythe time evolution of the fields

By ONIH , On we know that :

8 = i [H, = HO(x
,

H) - =0(x, +H = 2(8y([+(g) + (80(y)) + m28(y)
.

O(x) - O(x) (y) + (50(y))) + m
> 0(y) .

3 =

= (dy( =π(y) ,
0(x)

-

+ = (70(y))),
0(x)

.

+ ma0 (y) ,
0(x)

.
)

I = i H
,π = CHI(x, H - Iπ(x

,
+H = 2 (8y(=+(g) + (80(y)) + m20(y)

.

π(x) - π(x) (y) + ( 0(y() + m
> 02(9) .

3 =

= 2(by( =π(y) , π(x)_ + = (70(y))), π(x). + ma0(y) , π(x)]

Commutations Relations

FAB
, ? = A = B

,
C

.

+A
,

C
.

B IA
,

B
=

= A
=

A
,
B

-

+ = A
,

B
.

A [gO(g) , (X)] = (Vy (y)(((x) - (x) (V0y) =

:(AB)
, C = (AB)AB

,
C

.

+ =AB,
C

.

(AB) = (AB) B
,C + A, B

.

+Al
,< + A, C B

-

(AB) = Vg (O(y)O(x) - O(x)0(y) =

=

j = (y) ,
O(x)) = 0

[(y) , O(x)
_

= (y) [ I(y) , (x)
.

+ [π(y) ,
(x)

_ #(y) = - 278 (1-( (y) [N(y) , (A)] = Cy) [T(y) , (A)
.

+ [N(y) ,
(X)

. (y) =

[y) , (x)
=

= (y) [0(y) ,
()] + [0(y) , (x)] 0(y) = 0 = 03y) ,

π (x)
=

= 0(y) [0(y) ,
[(x)] + [0(y) , π(x)] (y) = 2i8(E- 5) (y)

[0(g) ,
(1)

_

= [0(g) ,
0()

_

= O

-

((y))",
(1)

_

= (0(y) !=jo(y) ,
0(x)

.

+ =(0(y) ,
O(x)

.
(0(y) = 0

- I

[g(g) , (x)
.

= Eg(O(y)π(x) - π(x)0(y) = *g[0(y) , π(x)
=

= iS(x- y)

[Lg()), (X)
_

= (y(y) g(y) ,
(x)

_

+ g(y) ,
(4)

.
(y(y) = : ( (y)(E (-5) + (EyS(-))(

y (y)



It follows that:

8 = i [H
, 0. = HO(x

,
H) - =0(x, +H = 2(8y([+(g) + (80(y)) + m28(y)

.

O(x) - O(x) (y) + (50(y)) + m
> 0(y) .

3 =

= (dy( =π(y) ,
0(x)

-

+ = (70(y))),
0(x)

.

+ ma0(y) ,
0(x)

.
] =

= ((y S(x- y)π(g) = π(x)

I = i H
,π = CHI(x, H - Iπ(x

,
+H = 2 (by(=+(g) + (80(y)) + m20(y)

.

π(x) - π(x) (G) + (E 0(y() + m
> 0 S

.
3 =

= 2(by( =π(y) , π(x)_ + = (70(y))), π(x). + ma0(y) ,
π(x)

.
] =

=- (By( = yf(x- j) . y0(y) - m2 0 (y)S(Ei-g)] =

= 20(x) - m = 0

This proves tat CAL = O(X) and that CAL-5 + m Sabato

Fourien exponsion of the field
We know that : I , ap = Ep ap and IH

,at Esc
The operators in the Heisenberg Picture are given by:

iHt
e apeit Eseit+

a
+

p e a

Mapping ap giptap and at sta in O we get =
Ep
(ape + ate) where x = pat

N
.
B

In Heisenberg's picture , operators such as ap, at ,
OX..... home time dependence stome evolution of IP's and I states is hidden within the operatore

Therefore,
the final states still evolve with time thanks to operators

Time evolution must be unitary(i .c. IP FUC,toIYCO Sit
. UTC, o UCA, to =I ? ) such tat total probability is conserved



Causality in Heisemberg's Picture E, and Eg are causally connected

While the field OCAS sottofies the Klein Condom equation ,
there is still some aspects of no doment innoncance E

n
and Eg are not causally connected

In fact the fields sotisfy equal time commutation relations
,

we have no idea about abithany spocetione se parations st

In onder for own theory to be consistent with special relativity it needs to be causal un he
asWe thus wont two operators to commute when applied to two events not cousally commectes as one event should not offect the other

Two events MondyM are not casually connected if and only if the spoce-time internal st = (x -y) o o s

We thas wont own operators to satisfy the following: O
,

CAS
, OcLY) = O X (x- G) co

As own theory must sottsfy this
,

let's check it by computing IOCA
, OCC

- (x - y) = = (x),(y). =) [lape P
+a)(a988 -La98

+ a ei8 (ape p
+a eip)] =

C
=(e (apage (px+9)

+ apatpe(yy
- px)

+ a
+page(px

- 9y)
+ at age(p

+9)
- a) aae-g a e(9- pe (p

+9)

=( E , ag.

e (p+ + [a,aei(y-p
-

-

gaz.

e (px-qy)
+= +,at -

e (p7 +9y)) =

6 -

a -

, P a

=Je -(i(qy- px) (i(px -

9y). S(p- q) =
3

2 E-

= (p1 : ep(x
-y)

.
eiplese

What are the features of A (X-G)?

1 It isComent imponent as theme is plagl and the immancantaneosuref
2) Does notvonish for causally connected events

.. , gl,00
s .

t
. (-y)= e

3) Vorishes for all Sx-GIO Why?

Own theory is indeed Cousal

Propagatons
Some times we are iterested in determining the propality of finding at location xa pointicle producedat
These probability is known as the propagator DCAG) . It com be computed as follows:

i(px+gy)
①(x)0(y) =(a age(

-9
a ( =

=da e e( 9
+a e (P 9

+ap ,at
(p9

+ a
+

pate x 9
=

= 1 ply) ee e + age(-99 +a
-9

+ atae(agy

The propagoton is therefores

DIA-G = COLOTELOLGIOSCOLOCASOLOSESPLO10S+ E ollose =I C 9)
= Ja e elee

consequences of propagaton description:

The propagator D (X-y) = CO/CXO(G)10P(-) represents the probability of a particle produced at to be found at M. Similarly, DC-x) is the probability

of a ponticle produced at x to be found at g . If separation is spocelike i .e. LAGCO , DCAG
E which meons tat the probability as exponentially

decreasing but non-wonishing .
How is this possible within a causal theong? While the propagaton is non-wonishing outside the light come ,

the commutator

IOCAL , OLGIDCA-G) -DCG-x) = 0
.

This con be interpreted as the non eno complitade of the particle trowelling from y x concelling the omplitade
of the particle going x I , y , leading to a met zeno effect

Similarly, for a complex field : FYCAS , UTCGLIFO and the particle x s concels otportade going sx



he Fegoman Propagaton
Time ordering: Symbolyzed by T

, refens to ondering quantities by placing all operations evoluated at later tones to the left e .g. To oly nooo
Feymoom Propagatons

FLEGLOOOOS P 20
o

o oI
claim : Ferman Propagaton con be whitten as : Af (x- g) =I pc o

e p(-G)

Proof :

We have to show that, by integrating over po ,
we recover D (AG) , DCG-X)

As p-m" = (pp) - p- m2 = (po)-(Ep) = (po- E)(po+E) ,
the integrond has istonder pole a↑ po = I Ep

(
In addition

, for f(p) = (ph - mae
ip(x Y

we hove: F (p) = (po-ECpE e P(X GO) + i p. (7 G

· le if(p) = 0 if yo
· linf(p) = 0 if y o

~
Im (po)

espoto O

&

x y

&
& & 1 Re(pC

&

El CER > Re(pC :ie<yo

We con the applythe residue theorea : OfCELE E Res (FE) if counter clockwise
, for counter cockware

I T

The Res (f , Ek) =

< I I Lidoe ((z-zf(z) where m is the order of the pole
n - 1

It follows that :

i - ipo(x
=

y) + ip (E-5)
· Res (f, ) = lin((z-E) F(z) = lineEp (p I p

e ↳-E(4) +iLeg)e
0

- E

- ip(x
=

y) + ip (E-5) i ga- x + i(5) . (i- )i - iEp)· Res (f , -E) = lin (z + E) F(z) = linees
Ep (p - Ep)

e - -

2EpeO

Them we home: Flip sign of p
· A

f
(x -g) = Jap 1 e-ip(x-y) with po = Ep if yo Does not matter as integration boundonces one syan3(2T) 2

· Af(x- y) =1 I (y-x)
with p = E if oo

32Ee
- ip



Green's Functions

Applying the Kleim-Gondom Equation to the Feyron Propagator we get :

(0 - v + mt) Af(x-y) =1 ap e-ip(x y)
= -if d p-ip(x-y

= -iS(-y) inrespective of contonsei (2π)e

If we choose different comtouns :

Im (po) Im (po) Retonded Green Functions -Gl = DCAGL Dx X> yo

↑ ° yo r x yo yos yo

> S
- - 90 < xoNinelpos N Advanced Green Function. Al Des gosto1 C I I S I

> C S

Re(pO)·Ep
·

Ept
·Ep

·

Ept~ &> >- - x oL X° yo
↑

Refounded Green Function Advanced Green Function

ARCA-G) and AACXG) are used to solve the inhorogeneous equation Con JCAS is a source term

Ap is used if we know the initial field config.
and we wont to find what it evolves into

A is known if we know the end point of the field and we wont to find where it come from



Nom-Relativistic Fields

Consider the complex scalan fields QCA, and YCXI with Lagongian density L =S Mo
These satisfy the Kleim- Gondom equations

· 66 y + m =y = 0

·

(p(
*

y
*

+ m *
= 0

We con decompose the field into : Ca
,
t = e-cent(x,

1) and (E
,
H = e

+ imtvx

(xY I
H

-imtj) - e
N

The KG equation tarms into. C -Io S (impiant te -imtfay + pimtm =

- int i -inti-imt
== m-e-imty - ime -imtf2np + e-imtma 5 =y-ime y + e ↑ - C

= e-imt(j - 2im - +2 y ) = 0

Apply to the Lagnoregion Density: IG a
*

y = y+

y - 5y+vy - m2 p
*

y =

- im eimteimt)(- imeimt + eimt)- - m
= m* + im*j - im +

8 + 8+ j -v*5 - m28* =

= im(+-+ ) - *

Non-relativistic limiti p on so siti Similar to Sch
. Equation for a free particle of mass on but no probability interpretation

↳mi m S .
t. = - *

The first onder lagnogion is symmet wint internal thoneformations of the kind i sey
The corresponding current is : ja = (-

y
*

y , a m (y
* 8 y - yEpx)

What about the Homiltoniani

S

Conjugate Momentar: I
C. y

* The comj.
momenta of 5 is i which mokes sense as to specify a pstonder system it is enough to specif p, pat to

by
It follows that :I = - L = I'm *
To quantize the Homiltonian we impose the following relations . I PL, YCGSINTES, GLO and INCES , Y GISCEC CSch. Pocturnal

As this is a tonder Lagongian , I has just one solution of the form CASAP

The Jounier expansion is ()=a and commutation relations la, a) = (2)3S(5- 5)

By Plugging in the Founcen Tromsform and using commutation relations we get . HIP

Thus
, quantizing the tonder lagongon beads to :

· 1 single type of particle > Anti-porticles one consequence of relativity
· The conserved change QFJBp is the pantide number and remains conserved for interactions

· No non-relativistic limit of real scolar field as porticles one their own tipontices

Recovering QM

relativistic
In QM : and are operators U
In QFT: Only PP is on operation CX is not tolked about as single particle states are only localized in moreatur spoce but not in position spocel

In thenon-relativistic limit :

Operator()=S ate m Num (es(0)= (0edele
By wore pocket interpretation this con be interpreted as a particle state localised at position I

It also follows that the position operation =SCUOL St
.
E



Let's now construct the Schrodinger's worefunction by superiorposing one particle states i
.e. I Jo CIS

It follows that : X1 =/ (I)

What about monmentum? The operator is p=J a papD

From which follows that PIE = Cataly
-i

=.
=( a y( e

9 10) =

= (Bxp pa
+ -i

=
.5)↑

p+ [ap ,a..y()e9(0) =

> t
= (bxp 3

D A p
-ip
((x)(0) =

(2T) I I

= at(e(y() (0) =

= if 3x↑(e ip)f(x)a+

p(0) =

= i peip glsa(0 - (y(s)e i

=-i ((s)!e = Se (GE)

Therefore,
the position and momentum operators act on single portice states just like they do in QM and home IX

,PRESI

In oddition :

H = (3x * =1 by pluging ody's founier Thomsforme

IThem HI = Bpstag():-
↓ Similar to demination

=-am((())I
I27:-

Summary and Consequences

The complex scalar field Lagogon Density is given byI G
*

on Y

The field satisfy the KG equations. Sto =O and S*on Y
We are finee to decompose fields however we wont to e .g. yeetf , teiett

By applying these decompositions we con get k equation and Laghongon in terms of F and *

By the applying the non relativistic dirit i
.e. IPI son we con get the non relativistic equations

id = -(am" if (mi ~ Sch
. equation for free particle ,

however no probabilistic interpretation

(i - 2m if Gy my

These are first onder Lagogon and differential equations
From thistoghongior it follows that :

· j = ( - p y , cm(y** - yy*) due to internal symmetry The conserved change QFBQY is the particle number and it is conserved for onl interaction

·conjugate mom.: # = 62/b = i
* ond H = (2m)y** y

· () =/ e with la,a) = (2) S(p)-5) Single operator because of ist onder
. Therefore single type of particle and no oriportale

> Ip = a p (0) and
a (0) = 0 L which is a relativistic concept) .

It also follows that there is no non relativistic field
> HIp = (p/2m) - p as H=catap for real scalar fields as in that case particle is its own antiparticle .



In non relativistic limit :

Position localised particle state IL created as worepocket a .e . ISTCOLIOS where TESpe
As 1) = y

+C(10) and( = a+ 10) we hove

· Position operatori x= (B3xx y
+
(e) y(E)

· Momentum operator : = Je patap
We con define the Sch

. Worefunction as 14 =/ CSI where SICALE
We con tus show that :

x"(g) = (((x) (SI) 3 [x5
,

pk] = i jjk Quantum Mechanica!

P"(y) = ((x ( i)(x: y())(E)

-

Similarly: HIS =
- (PXGASSESC

em -

From which follows: i -m i.e. Sch
. Equation but this time with probabilityinterpretation

Why Q = (dx(y()p



Interacting Fields

Interactions

Often particles more in some fixed background potential VCE

The oddition to the Logongion Density is of the form ALEVCY

If we hove a system ofn- particles (m, 2) we expect to home interactions between particles
The oddition the lagnogion is of the foro : ALYCLUCES CESCE
This correspons to theochilation of two partides and the creation of two other particles

Smoll and Big Interactions

Not all interactions arealways relevant some are mone important at low emengy while others are onone important at high energies

For example,
consider the real scalar field Lagogon Density: L = 2 byONO I mo

The X ponametens are called X coupling constant

As L has units [L_ = 4 (i.e. energy") and [0 = 1 we hove that [xm] = 4-m

Cleonly,
the behaviou of each interaction scales differently with emengy

We are interested in small pentunbations:

If we define E as the emergy scale of the interaction we get 3 types of interaction based on their coupling constants Xo

· Relevant i.e. Ex z-

= 1

These terms one dimensioneless for XVE which means that at energies EXz are weng small perturbations (compared to other terms of the Lagongcom)
while are big penturbations for X E
· Mongimal i .e. [4] = 0

These one dimensioneless and this small if x, 1

· Innelevant i
.e. [m] o if mc, 5

Dimensionless pokometer is AE
,

which is small at low energies and high at high energies

N
.

B. Suppose we find a TOE that describes everything at the emerg scale.. However, we are interested in scale ESLA

We can white Xm =A where yo (1) . Therefore ,
as (E for >

,
these are heovily suppressed

Interaction Picture

Schnodinger Picture :
Interaction Poctune : Hybrid of Schnodingers & Heiseabeng's Pictures

· States depend om time : = HIP) Split Hamiltonion into H = Hot Hint where :

· Operators are time independent · Ho is te Free Homiltonian which goveros evolution of operators
L · Hint is the Interaction Hamiltonian which govenos evolution of states

Heisenberg's Picture : N . B. Splitting is abituary but it generally poys off to include only int
. in Hint

· States are fixed 14 = e(4), S .
t.

-iHt d(H
= He =H (P)

H:dI = Helpe
dt

· Operators are tie- dependent O
N
CHE O EHA

-

Consequence of Interaction Picture

H = Hot Hint i j= Host Hint Ps

If 47z = e
- Hot

y = 1)=
= ecot HinteHot

(4)=
= H

= (4)=

Therefore ,
in Interaction Picture

,
we hove :

· Hamiltonion : H = Hot Hint
· States : (4()==Hot()),
· Operations: Of(t) = e Hot e-iHot s .

t. H
=

= ecHot HinteHot

· Sch
. Equation: =

=

= /I



Time evolution of states in Interaction Picture

States evolve occonding to an operator UCE
, to s .

t. INCASIFUCA , to IYLo

What are the properties of this operator ?

1) As probability is conserved
, US, to is unting i

.e. UTLE , to Ult
,
to 1

< Y(H((t)) = < y(to) / Ut (t , to) U(t, to)(Y(to)) = < y(to)(y(to) = 1 iff UTLE , to) Ult
,
to) = 1

2) Evolution to ste it must be equal to to st i. e. Ult
, to) = U (t

,
+

,(Ult , to

(P(t)) = U(t
,
t
, (lY(t)) = U (t

,
t
, (U(ty , to)(y(to)) = UCt

, to

3) No time evolution leones state invaliont i .e. UCE
, E = I

What is the form of such an operator?

schequationinfat
.

P dalthultoltoe
ne totoitteS

Why do we need the time ondered solution ?

t')cExcluding time ondering we home : Octo exp H ..

-

Toking te deninative:

(t
, to) = - H

=
(t) - & [ CHICH HI[ Ed . =

=
-CHICH-HICACCHIN ,HI.

If [HCH)
,

H(H
=

= 0

However, as IH wewonde:-t=AUlt , to Satisfies Sch. e

claims he time evolution operator is given by Dyson's Formula UCol exp
t

Exponsion of Dyson's Formula : Ult, tol =1- HIA +CHICH ..

Proof : As I is the latest te we hoves
-

: Ult , to = i, Tex H =THE
-

Examples Of Interactions

1)"Theory : =-- with 7

Byexpanding we will see the following terms. (at , Catap ,
etc

.

These cheate and destroy particles > Porticle number not conserved

2) Scalar Yakawa Theory: L = 2 p *CM + 1000 - * - 7mo -

gy
*

yp = Ly + 20 -

gy
*

y0 with M,
m

While the p interaction does not allow for the individual conservation of o and y pointicles ,
it con be proven that the lagnongior is invenient ander

phase notation ofy leading a conserved change Q ... difference between the number of y and toy li.e. Il particles is constant

P ..... .. ...
N

.
B. Local minimum at p = y = 0 but unbounded from below for lange - go

O O -↑ ..
--- --- ...................

..... ... .....Y



Scattering
The interaction Homiltonian Hint com be denined from L by computation of Stint

Sint will contain serenal different fields,
each one with a specific set of operators

As Hint will affect UC , to) (See Dyson's Formula) the different combinations of operators in the exponsion will show different types of reaction

Example : Scalan Yukawa Potential

Interaction Hamiltonian Tintg/d yo
Fields :

·
a + at Com create and destroy o particles ... mesons

· ymbact s Cam cheate y and destroy y particles a .e . ferations e .g.
Nucleos QFNC No cost

.

· p b + c Com cheate Y and destroy y painticles -

First Onder Interaction : ba and at ch Second Onder Interaction : (c
+ ba)(cbat)

......
P ..... ...

↑ O

.....
--- --- .............Y... .....

Amplitudes of interactions

Initial State :(i) at time t

Final State : Ifs at time It

Assumption : Assume the state Is at I x and the state IfL at x to be eigenstates of the Free Hamiltonian Ho

The assumption is based on the idea that
, prion to the interaction

,
the state Iis is foroed by a set of mor internocting particles tat are egestates

of Ho . They them approach each other and interact briefly .
The particles the move away from each other

, forowing a new mon- interacting state

In odolition
,

thelis and IfL states are expected to commute with individual number operators N
,

which contes with Ho but not Hint

N
.
B.:

· Assumption does not hold for bound states

e.g. e + p > H interaction continues in If

· In QFT a ponticle ismeven trulyalone due to mony (vintual) excitations of nocula

Scattering(S) - Matrix

Amplitude : A= fim f(U(t ,
t

-
)(i) = <FIS Ili

IExample : Meson Decay =b ,b = bb-b = (2)S(- 5

consider the interaction : b'ca (1st Onder Int)

Initial State : (i = 2 pIOS
Final State : If = EqEqb C10

(X)considering only the sander terro Ost
, to ISe og O RECENTE CALO

Amplitude: < f(S(i) = - ig(f)(by
+

yp(i)

BK BK k-xC C CFields. OCA CASECate S 32E
(1

-i
+c eikx) 4

+
(x) =JBK= J D C JS J

P(x) (2π)
k (23E(e-ck + beik)

It follows that :

2 meson state with zeno overlap with IS

①(x)(i = )a (a atla, e mm = epo e

- ik . x -

(f(S(i) = - ig(0))dbkd3k2 EqElogu C
,

Ki + ik(x))CE ↑
ik .

x) -ip.

x(0) =C ↑ + I
2

+ +
es

(2π)6 -Ele Cq2 -> -> C t Ox
,

e S
*

2

e

Ekn

=-ig(0)de E
-2bg -

+ gi(kz
- k)) - x

+ Cybe (k ↑ -ei(ki
-

kz(x) e
-ip -

x(0) =

Cq + (ck
, Ck2

lik +
teilbt O - C D

(2π)6 Ek
,

k1 K2-Es



- + +

(f(5(i) = - ig(0))dx k K EqE
↑ 1

+

cx . ec (x2 k, - p). x

↑ ↑ · =
ei(k2+ ke - p) .

x(0). =-> D CCq2 ->

1 -

>
I

10) + 200k(2π)E EE
9 k2 K1 k2

== ig(0)(bxk Eq
-(2)(bb,

+ [b ,
b- -e

(2π)G Ca
-

Cq kz
(

i(k1+ 2
- P) .

x(0) =

E
,E
- =

2
+

=-ig01(d, e En (6(22) S(1). e
(kete-p).:-

= - ig(01(dx ei (9 +92- P) .

(0) = - ig(2π)" (0)S(q1 + 92
- p)/0

IIt follows Heat: FISIC P
( As momentum are conserved is consented <fisli o o

Wick's Theonem

Consider a real scalan field OCAS . It com be decomposed into :

+(x) =) E e-ip
. Positive Frequency Piece"

tip.X

0 (7) =(dp apee se "Negative Frequency Piece"

Note :

· Normal Ondening requires O to be to the left of Ot
O

Assuming x o :
TO() = : (G) : + AF (x- G)

TO(x)b(y) = p(x)(y) = (0+
(x) + 0(x))(0

+

(y) + 0(y) =
↑) = : y(x)+(y) : + Af (x- y)

= o
+

(x)0
+

(y) + 0
+
(x)(y) + 0(x)0

+

(y) + 0(x)0(y) =

whereAffee
=

+
(x)0

+

(g) + 0 (g)
+

(x) + Iq(x)
,
0(g) . + 0(x)0

+

(y) + 0(x)0(y) =

=
+
(x)0

+

(y) + 0(x)0
+

(y) + 0(y)0
+
(x) + 0(x)0(y) + =0(x)

,
0(y)_ =

=: O(x)0(y) : + D(x- y)

Similarly, if :

TO(0(y) = :O(x)0(y) : + D(y- x)

Definition : Contraction of a poin of fields in a string of operators ... CA ... CAGL ... mons to replacing those operators with the Feyroom Propagaton
The contractions

,
based on phenious results

,
are :

--
t

(((y) ()(y) = Af(-y) and (:y) =

Theorea : For a collection of N fields OCCAI NEI N we home : TCO...C = . .. ... . All possible Contractions :

e

O Oe . g. (, 3) =: e23: + 2:30 : + 3 : 20: + : 0203: + ⑳ : 0, 04 : + 0204 : 01 03: + 03 : 102: +

e le ase -
+ 01020304 + 01030204 + 0+ 04 0203



Representation of Lorenz Group
A general field (A) com tromsform as : (A) I DI-1Ja.0(x)

DIAI is a representation of the Lorenz Group and thus satisfies the following properties:

· DIAI DIAC = DIAA2
· DIN] = D"[1]

· [1] = 1

The Lonente Group is a Lie group and we tus considen the infinitesional tonformation. AMSMw with the property NNE S .
t. O

As w is antisgatric there 6 independent components in a I dimensional representation
There are 6 transformations : 3 boosts + notationshe. one for each independent element

We com define a basis of six cliff. matrix to describe onl tonsformation
Basis matrices are called generators

A (A = 1
, ..., 6) on MSO (with

S
- SOC

· Definition of ontisymmetryc generators :

(so,M
= SMov - 10MS -poi : Boost in X"-direction

(59 = SMS -0 M : Rotation in Xi-plane
Gemenatons obey Lie Algebra:

INSO
,
M = NOTMS-STO SO-S

We con now white why as a linean superposition of generators : why = E R
go (MS)M

The heps con them be whitten as : 1 = exp (E R go MSO)

Spiron Representation
Clifford Algebra E,I where IM is a mathin

Properties of J-matrices:

1) From EM ,j =2 I we hove:

· (j0)
2

= 1 ond(j')= - 1

· jMj =-jj if f
[0 ,

05] = 2ijkOk

2) Commutator : So= js , jo =-1. = 0 ond S= if

=SM
, 88 .

= yMs -SM M Matrices Satisfy Lorenz Algebra
ISM

,
So = So- Ing S Mogs-hgS

Proofs
Sgo =

I

- !
-

O88 , 80.

= 1 980 - 80=26sja- [8j03
.

= 12 (80 - 31 = E i
ISM

, S .

= -12 (hm 1 - (My)(y) - 28SE-(h1 - yMyr)
.

=

= & (898M - ymjjs) = - 2 589 ,838 -89" - 8 [8, 893 + yySj
.

=

=-2
=

2j) - 2hS = j-L My

ISM
,
so

.

= (yj- )( - (1) - ↑ (se- )(fMj - hM 1) =

= jyjo -jj - jjm+ -jjjj so-1
= =84jjsjo - jj0jyjr .

=

= = 0[8, 89380 - 89jjo - yS(j0, jMzjx + 88jMjoj =

=Fumou-Egus-U , 843 + 88 200, 03-UGNg.

-

= 2
=

(jo - (01)h - (jyjo - (0)hMs + (88) - (SM)+
ov

- 10 M (jSM - (S1) =

SSM= /Mo - IMsgr ho S - (



Spinons
Under Lorenz Transformation we home : same

prom
To ensure some thons

L

4(x)) : SIAYP("X) where = exp(1 -Rgo MSO > SI] = exp(1-2goSSO)
N. B. A

go
are the same for A and for SIA even though SSO

.
This esules that theyhepresent the same transformation

Rotations

A notation in xxx plane is given bysi with i gij t 1000 01-0os
ore

-

2 0 -0

What is og ?
-

Pauli Matrices satisfy:

(0i , 05] = 0
+8) + 00: = 28)

iFo, 0. = 08) - 08:
= 2 : 25 k ij zijk

ok o

H
x

= Eg
of o

> S =-

I O O
K O OK

It follows Heat :

I00i = 28 - 0
:8) S 08j = 18:jk8x + Sis

-

[o
,
0i] = 2 (0: 8) - f(j) = 2iziskok

Them AgojkY s i
t. ... notation aroundx by angle us

It the follows that:si = a
125 + 22,

st + ...
= 2( 0254) + ...

= 2 (a+25 + 2
1
S + 22353) = E (0003) + pz)0002) + y (00 ! = po

Let's define : == (, & 3) ando = (s ,
s

,
5) S .

t. SI =(i.

Boosts

=100 -o i and if 20 ---Poi i we hove 511=

e
+ x:

8/2
2 O

N
.

B. There are no finite dimensional uniting representations of the Lorenz Group . Therefore STASIA FA

Proof that STIAJSIA
-

F1 :

s11
.

S
=

1. = 1

Thus
,
SASSexplesso r

is anti-hermition

As S582 [S , yo ,
55o is onti-hermition if all J are anti-hemoition

However:

(80)
2

= 1 Real Eigenvalue If we choose js to beconto emanation
, I will be henonction

(i) = -1 > Imaginary Eigenvalues Rotations are unitary but boosts are not

There is no way to choseIl such that SI as onthemonition

In the Chinal representation: (fot = go and (j'(t = - js



Constructing an Action

Consider te field Y(X) with adjoint yt

It follows that : (A SICA) and A HASES AS SISIAE TAY(A) is not a Lorenz Scalan

As the action must be a suitable Lorenz Scalan we need to find an appropriate Loneatz Scalan Summary
Let's consider a representation theat satisfies (89 = 8

O and (fi) = - jc (M) = jofMjo and (SMY = - JOSMjo
It follows that : joym jo = U

°

[8M , 003 - (j03j = 220Mj0 - jm = (jM)
+

(SM)t = 2
=

(0+, (M)
=

= 38(8980 - 800 (U) U 8 = 8
%
8 , ym -8 = - JosMo It follows that :

STIA] = JOS[A] Jo

As a result : SA = exp(E-2go(SS)) =

exp -2gojosso jo = jos [1 jo p = y
+

jo s .
t. yy is a Lorenz Scalan

Define the Dinoc Adjoint : y = Ugo
Claim: Y(X)Y(A) is a Lorenz scalar

Proof : 4 (x)y(x) = y
+(x)Joy(x)

(y(A), ( >SASIAJY(N) =

= y
+
(1 x) yos"[1] (80) SIA] (1 x) =

= y
+ (1 x)joy(1 x) = y(1x)y(1 x)

claim : YJM trosforos like a rector

Proof : My <(1) SAMSIA_ Y(1 ) =

= y
+
(1x) S[1] (MSIA](1"x) =

= y
+(1x)S [1] SIA

.
y(1x) =

= y(1 x) S [A SIAYCAx) =

= y(1x){ = 5111
,U.

SIA] + My (1 x)

IfY troosforos like a rector : ANGMSIAI , I SI
As 1 = exp(1 -

2
go

(30) = 1 + 1 -
2

ga
&S +

... we hove : 1
y Sy + 2 -2go (MS(My +

...

As SIA) = exp(1-2go
MSO) we hove :

SIAS 1 + fz -
2

go
SS0 +

...

[1] 1 - 1 .Rass +
..

0
It follows that : ISIAI

,OMSIATENERGI, I ... I . +E 55x .... - =28go ISS,
= E gCMSM

Them: Isso
, U .

= - (MSO(My fu
As ISSo

, &M] = US - Jos and (MS)y = SM5 - ho s,
we hove :

(MS9(Myjv = - (10Mjs - (SMj0) = - [Sos
, (M)

Thus: (AS 1 - 1M (1 )y (1)

Claim : YM thansforms as a loneate Teason

The symetinic port tromsforms proportional to T and the antigone s



Dinoc Action od Equations

Using the Lorenz scalars we can create the following actions =f LA CIMon CAS
The Dinoc Lagrangian is thus LYCA YCA) where AGG

Dinoc Equations
Applyin the Euler Lagrange equation to L

p gives the following quantities :

(L/by = - y(x)m (2/b(b(y) = Y(x)iya

62/04 = (ib-m(y(x) (2/b(24) = 0

As a result we have the followingequations:
Dinoc Equation: (0-m)(X) = 0

Adjoinl Equation: y(x) (ib + m) = 0

The two equations are related byan adjoint tronsformations

Adjoint := (ib -m(y(x) jo = i jMGp
- my(x)

. jo = - i (0
,yy

+

(x))((MO) - my
+

j =
== i by

+

(x) (jMtjo) - my(x) = - i (by
+

(x) (80Mj0j0) - my(x) =

= - y(x)(ibum + m) = 0

One com also show that coch component of y satisfies te G equation.

As (ijMbp - m)y(x) = 0 so is (ijb, +m)(ijM6- m)y(x)

Therefore : (iyy + an) (ijMGa - m) p(x) = ( 8 Y yMb da - =my by + imjM(p -m2)y(x) = (yjMGy0 + m y(x) = 0

It follows that : E(YJM + m3) + (fMyYbby +m?) y(x) = (03 + m2)y(x) = 0



Symmetries of the Dinoc Action/Laghangian
The Disoc Action enjoys te following symmetries
· Spocetine translations xM . c (X(M = xM - EM

· Lonente transformations pt 1 (4)= SIAYP(A X)
· Internal Vector symmeting y 1 p' = e- y

· Axial symmetry ↑1 : p' = edy and 1 · 41 = yes

Spocetione Iranslations

T : x , X - EM T:
M

, . M + EM

The transformations are

p1 · p'(x) = u(+ x) and pl · p'(x) = ↑(1 ) S
.

t. Sx = EM (xc = (byy)(ijM6y - m)p(x) + yb = (ijM6y -m)y
.

=

↑'(X) = (X) + (64)SX = (x) + 50 < Sy = (6Y)S = EMY = (2x4)(ijMby -m)y(x) + (ij↑by - m)(b, y) =

↑'(X) = (X) + (64)SX = (x) + 50 < Sy = (6Y)S = EMY

The Laghangiam is : L . f

L = p'(x)(iyM6y - m)p(x) =

=
y(x) + Sy

. (iyM6u -m) y(x) + Sy =

=

= L + y(x)(ijM) - m)Su + Sy(ijM) - m)U(x) + Sy(ijM) -m)Sp =

=C + y(x)(ijM6 -m) by + E by(ijM6 -m)y(x) + E>2Y(ijM6u- m) EB)By =

= L + E b2 + EB6y(ijM6 - m) =by = 2 + E -
+

c = 2 + SL

It follows that : SL = Ju FM = E G
,
L > fM = SME"L justa scalancomponenteahoud

&L
The conserved current is: ja S+ SY-F= -SN E L s .

t. Juj = 0

As Et is coast. we com white MEMUSML and as O ,
we con heone the cost

.
E continely

We com thus white the following tempor : UsingDiroc Equation

Emergy Momentum Tempor: TMy = yij My y - SML = M

Conente Transformations WMy
-

xM , - (x)M =

M
,

x" whene = exp 12 -20190 s .
t.

.

.
x

= SMy + E -Ryo(MS(My +
..

-

% <(4) = SIAJ UP(A) where SI= exp.2-2posso .

S .
t

. SIA = Sa + E-2
go (5500p + ..

pt (y() = yP(1 x)S... "p

Note : (MM= -ho w = 2- go (3)y = E -2ga(s - hoSt() = 12 ( -2y - 2+) < M = 2M

It follows that
, for small transformations,

the fields tromsform as:

(0( = B + 1 -
2

yo
(55)9

- yP((sy -wy(x") = 54 + E -
2

yo
(55)

p .

P(x) + Sx(2
,P) . =

- -

-

&

= Sp + =z -
2

go (550((B - - yP(x) - wMy x" (6). =

-

= 4(x) - why xCyy + = -2go (530)pyP(x) + ...

=

-4(x) - why x + + = -2go (S90) UB = y(x) + Su

Spt = - wMyx" Spyt + 12 -2go (550)] B =
-

2
-2yo (MS(My x c - (SS0( B

.

=

== w
=

x yby -E(5) B.

As Laghangian is Lorent Immancant : SL = O = G F
As 626(6Y) = 0 we don't care about Su

The conserved cunment is thus:

ja = yijM Sp = w50yij x 00gY - E (Sgo) . =

-

== ws *
o YijM(> y - 2 pijM(Sgo)-

=

= -
30

xo +*) - 2 yijM(Sgo) 4.



As w = -WY
,

sos= -S we hove that : j = wag- Sog .

= -ws o SgoY.of

As both cunnents are conserved we con sa them to get a new conserved cunment I

Thus:

- -

+ My - 24ijM(Sg0)
.

= Note : Compared to the KG Lagogian ,
the odolitional terr(59 =

WO NESTWE-M -:.
== ago- of isy provides the single particle states with

== wSO :XgTYo XoTMg + YiJMSgrY .

intermal angular momentar s = 2

Tong has a 1-1 hene

We com white : (JM (80 = xS T Mo - x0 + MS + yiJMSSoy

Intermal Vector Symeting-

Vector symeting: Left and night hooded Geranions are notated in same direction

Phase notation of the spiron . Il s =e = (1 2x + 1 +
... ) u

For small transformations. y's -U and I' C < Sy = -iCU and Sy = yia

It follows that : ja = -YY or JY = YMU

C S*
= (6Y(y + FJM(bY) = im-imy = 0 Thanks to E

.
O

.
M.

conserved Change : Q = (dx jo = /(3 x y8y = (bx +y Electric Change/ Porticle Number of ferations

Axial Symmetry
Axial symeting: Left and Right honded Geranions are notated in same direction i

.e . y ce and y s geis

It follows that : Sy and Spiag
For small notations: L' y(1 + ixj5)(iyM(, -m)(1 + i (j5)p =

no
= C + y(ijM(y -m)i(j5y + pidj5(ijMJy -m)y + 2 . ij(ijM), -m)iy) =

= L - i yfjby + Yj6Y - 2 f5U
.

=

= 2 - ic y(f, j5]py - 2myj5p.

=

= 2 + 2imxyj5u = 2 + SS

St = 0 if m = 0 > It is a symmetry of the Lagongian for massless pontices

The conserved cument is . Ja YY
However, this syametingdoes not sunnane te quantization process



Pane Wave solutions to Dinoc Equation
The Dinoc Equation is : (JMC- on) y = 0

As it is a pst-order differential equation we expect a solution of te form. Usape
To find the complete solution we must find a Sp's which must:

· be a 4-component spinon as JM is a 4x4 matrix

· depend on 3-momentump' as the energy (i .c . po) depends on m ond p:

By substitution: (ib - m)y = (ijM(y -m)u(p)e pxx
= (jpm -m)u(p)e pxx

= 0 > (jpm - m)u(p) = 0

The Dinoc representation is. Jo antidiag(Ax, Hexal and JantidingJoi il

Therefore : (8opo + 8pi
-maxs)u(p) = 0 antidiag(PROM , POM) -diag(m , m). U(p) = 0 where o = (1 ,

0
% ) and M = (1 ,

- 0 % = jo(o+) o

If we white u(p') = (an , ag) where ap and as are a component spirons we cor white:

Dinoc Equation .

IPo PROMO C

PROM - m
.

- 4g(p) Pu,
- muz = 0 (2)

we now evaluate the following: (p . o) (p . o) = (p(M)(py0Y) = Pqpy0MGx = (po) - p= p,
08 = (po (pi) = E - ps = o

It follows that : (p . 8) (pO* Ucoup) = m (pqOu,
- muz) = 0 s .

t. (1) implies (2) and viceversa
.

It follows that mu
,

= (p . o) Us and (p . o) ap = mag
polp.lo Amatz : p = ALp .o and ag A & where A is a constantS

Therefore , ony spiron in the form a (p') = A = (p - o) E'
,

mE
.

T

To impose symetgwe set A = o and E' =

p
. o E

It follows that :

p
. o E

u(p)) = where E is 2-component constant spiron s .
t

.
ETE and the state is normalised

p
. o E

similarly,
we con find solutions using

the Amsatz usP which must satisf Monop

Therefore :

(p =

p.on
where h is 2- component constant spiron the and the state is normalised

-

p
. on

To determine solutionsone could also white the explicit x Mation

Positive and negative frequency solutions

The terms of the kind aP which oscillate in tone according to r
Et

are the positive frequency solutions

The terms of the kind a LpPX which oscillate in time according to ret are the negative frequency solutions



Examples of Plane Wove Solutions

consider the case in which p = 0 s
.
t

. p = Com , o) > (p . 0) = (p . =) = m

The spiron solutions are :

a
+(p) = m) ond u(p) = m)n

Lorent transformation acting on U : U SIA CALESIA CPEPS

Therefore , a spiron alps tromsforims as Up . SIAU

1 Rotations:

+ i .e /20
A notation is representedby SIAS

& exo

Therefore ,
the spiron fields are transformed as I se and Il son

In terms of particles , we can see that te spiron fields describe the spin of the partide. In fact,
in the Quantum Mechanical interpretation, a particle

lim this case a field ,
we are get to quantize) has spin updown in a specific direction if the state (spiron field is an eigennector of the corresponding

Pauli Matrixand has eigenolue In respectivelya. g. ET (1 , 0) has spir up alon while ECO
, I has spin down along

2 Boosting
consider the spin-up state above

Now, boost it along x to a frame in which it has p = (E ,
0

,
0

, p
It follows that : (p . o) = (E-p383) and (p.) = (E3 + p303)
As E = (1 , 0) it follows that : O

G

a(p) = (Ep ( , m u(p) e

!

Similarly, if E = (0
,

1) we hove: (Note : egennode is -
S O

-I I↓ m 0
,

u(p)) = 2E Oa(p) = (E-po d
g

Helicity
Helicity: Projection of ang.

montuo along direction of morentum

· Operatori h =P. CPPS CheE

By applying to u(p) = 2E(0010)
T

we get h = + 12 > E(1
,0) is Right Handed

By applying to a p = ECOPOST we get = ECOa Left Handed



Immer And Outer Products

Define :E = (1 , 0)" and E = (0 ,
1)T

(3)
+

gs(t)
+

h) = gus, h (5 = 1
, 2) form a basis for the spinons = 1

Therefore: (P) = Pos (p) = Pe

Immer Products

In previous sections we sow that only a CPUL' cor be Lorente Immancant

However, atCPL . ULP) will be important for quantisation
Similarly:

at+

(p . a(p) = (8)+

p
. o ,+

p
.c)

p . GE
=

p . ogs
E(p .8) + E(p . o) = E

=

p
. (0 + 0). E = 2 po

E = 2 PSS utt(p)) - vS(p) = 2 poss

p . o Es
=" (p) . vs(p) = -2 S

av (p) . us (p) = a
++

(pj0((p) = (8+

p
. 0

,
8+

p
.o))), 8) p . ogs

= 25 (p .o)(p .8) = cost v"(p) - (p) = 0

p . o h
vi+

(p) . v(-5)= 0

Eav (p)) . (p) = at(p)joys (pp) = (8+

p
. 0

,
8+

p
.o))), 8) -

p . ons
= ↑. p . = p

. o -

p
.

op=i = 0

9 . 0hs
aut(p) . vs(q) = (8)+

p
. o , E

+

p
.o)

- g
. chs

=

(p - o)(g . 8) - (p . 0)(q8)
.

h) <(p) . vs()) = 0 if 5= - p

Outen Products

()= po, j
1 (p. o)33 p. o p . o &Est O 1

=

s p.o)Est:
Per

p .

os
10 =( p

. o

p
. o p . o &Ets (p . 8) &Est I O p.:

m
=

p + m

Dom
Similarly: (p) is() = p - m

Summany
att (p) . as(p) = 2 post +(p) .

S

(p) = 2 poss
u (p) . us(p) = 2 S =(p) . v(p) = - 2 SS

u(p) . vS(p)) = 0 v"(p) - (p) = 0

aut(p) . vS(- b) = 0 vi+

(p) . v(-5)= 0

2

((() =pom ((()= pe s > Very important for things that do not depend on spin s.
t

. we need to consider all spin

contributions



Quantizing Disoc Field

The Dinac Lagnongian density is : 2 = y(x)(id - m)P(x) = iyjoy + iyj))jy - you

The field satisfies te Dinoc Equations ConCity a y = 0

We com thus compute the hamiltonion as:

π(x) = (62/by) = i ug = i yt
( = 11 - 2 = y( ijbj + m)y = i0jobu = i y

+
bu

As we have already seem
,

the Dinoc equation allows for a different plane wave solutions. Ulp P.*,S pe
P.↑

,
a(peP

. X
and or(p)

p.x

The 4 solutions represent the positive and negative frequency solutions for spin up and down respectively
It follows that the fields can be whitten as operations in the following way:

Heisenberg picture i ... P IN,
HI Schnödingen picture: The I sign difference in the

2 2 ->- >
+ip .x

+ St
- ip.x

E perfettete Y() = s3 E bu(pe p vs(5)e- exponents between the two pictures
-> ->

-> ->

T(E)= Pe (pepe+sost(p)eip.. is due to the methic

The summation overs ensures that y creates both spin up and down particles connesponding to the CP spiro while it amochilates both spir up and down

pointicles associated with spiron USCPL .
Vicenensa for

t

Explicit computations of the Hamiltonian.

In Heisenberg's picture we can use . C = cytoY
We know that :

-

-Iu(p)e p.x- (p) ep.boy =
-53 iE

I E
3 -

qC = Eeb)ebu e (pt) + ()u(e(p+·- (((e (p -9)

H = (b3x(t =3 p Ep
1 +(v

=(uS(()e
- i (p +3) .

x =

CIT GESECCP - qX CCCP-GCX e (p +9)
- c S h↑

CqD
9

-

=Ef cE in -i
s a+

(G)u(p)e
+(p0-90)
_ ( (epqS(-) + (b)u()e (po

+90
=Da (pe(potts(+G= =IO

3

GE-

( E
↑↑

Cq

Pot
3 ↑ I ( e - ↑-Ee- (()- (((() svst(- / us(p)

-i21 ↑I ( ) us(p) etiepot =D

I -

=Ede Posbb- Ebbe

Therefore the Hamiltonion is :

Not Normal-Ordened : H = I fa Epib -
Normal Ondened :

(s+
p -

-

· commutation --i,e se-

S+ 3
.



Camonical Quantization

If we define the fields to be operators obying camonical commutation relations we home: CES
, YBLELINECES , YELLO and IPCES , YBLSaSCEG

Claim :

-

= Po(), YB()_

=[N() , 45(5). = O Ib, b
=

= =b,=, . ...
= o

S

[Pa() , YB(j).

= SaßS(- j) =b, = I, = (2(38S(- G[
Attention toainus sign!

Proof :

6 U

-
.j)

+ 1, ()Up()ei(+. b Wis() Un e (aYa(X)B(Y)=Je
-

. 5)
+ ( (e -.

-

9, B p,alt()usy(p)ei(+ 9
-, (ese(↑(5)4x(x) = (d39

E
I
in
·bb,u()u() ei (.-.)

+bit, sei+
->.j)

+ chy-> D

ht
It follows that : Ya, ()= (pag pesb ,b - un un e ,dueIl

+I bit Un e [, (e) esp 3 =
-

- vs()

n +
->C

↑ ->

-
. y

-

-

=(da E s,q - as(5)u()ei (pE- q ↳, (e(e -.
-

-

= (2) SS(p - g) . usy()use()weespes
-

= I d pl ? ()u()e ( () (e i (E-G
=

Ep
-

= Idp va((() + e-( (ge(
↓

Pp= (po ,
- 5)

ip.(- y
=/ leg[(p + m(xx + (p - m(xx -

(9)Be

- 1
=

S S t
C= sen Epi bob 5

-

C Sp
-

↑ eil= Se n E
: 2 po + (pi)

:
- pij') + (m - m)

. 2x(U) p

(-y))
=

=( E
Saße(e-) = Saf(E - j)

Interpretation of commutation relationships and Hamiltoncam

In the case of the complex scalan field we attributed the role of amochilation operator to c while the robe of creation operator toc s .
t

. Costo COL
This was justified by the fact that: 10 =c 10) + IC,110) = cpCp(0) + (2)SCO) 10 = (SCOSIO i.c. the c IOL state has a positive moro

That is
,

in the scalar field case the interpretation of cas a creation operator casures that there exist a positive noro particle state

However, in the case of the spiron field we home : C10) = C+C 10) +I ,c 10) = c+C(0) - (2π)3S(O) 10

Therefore , if cp is the anchilation operator , particle states home negative mono
.

We thus home the options .

1) Accept negative norm state

2) Negative norm state is amphysical , cp is actually the creation operator
3) Reject the harmonic oscillator camonical commutation relations

To see what to do let's home a look at the Hamiltonian: H= PERS=E- + (2)S(0)p

The commutations are: In
,SEG ,

IH
,E and IH

,CES,IH , CREEPCS

From the commutations we can see thatc must be an amnihilation operator . If it was a creation operator we would home particles beingcreated by energy declease

and thus the Hamiltonian would not be bounded from below (NO Vocaum ? ) ! A negative norm state is also not sensible
,
it does not bead to a sensible Hilbert spoce !

We thus need to reject this theong and find some new relations !



Ferrionic Quantization

The inconsistencies so fan encountered are related to the fact that particles described by the Dinoc Lagnagionare spin pointicles (i .e. Ferraions). As we know

from Pauli's exclusion principle , ferations worefunctions are antistic wat particle exchange as no two identical cam occupy
the same state

How does this reflect onto quantization?

When quantizing the real scalar field (ie. Bosons) no real inconsistencies anose from the use of camonical commutation relations

The Bosonic quantization allowed for IpL atpatosatgaOIg , p as Las ,at Sgometric ant
. exchange of particles

However, we saw that this cannot be the case for fermiones .
Nometheless

,
we can note two things:

1) Pouli's exclusion principles Ip, = -19, p s .
t. 1 p, + 19, p = 0 i ... c , 3 = 0 on E q =o

2) Dinoc Lagongion contains J matrices which satisfy Chiffond Anti- Commutation Algebra
These are signs theat Ferrnions follow anti commutation

Spin-Statistics Theoreo : Bosons (Spia integer particles) must be quantized according to comomical commutation relations Bosonic Quantization

Ferions (Spin-half integen pointicles) must be quantized according to anticommutation relations Fermionic Quantization

Bosons :

-
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.
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Fermione:

[b ,b =[, (2) SS(p- < > (Px(), Yp(1 = <PICE) , Yp()]=

[b ,3 = (c,3 = [b, =[b, ...
= 0 (Yc(E) , y (j)] = SaS( - g)

The Dinoc Homiltonion is Hous : H =IECOSCO) Fermion noccu has negative infinite energy ?

We define a vocaum /Os such that 10= IO) = O

St
We can them redefine the Hamiltonian w.. t

.
the nocuum engy as : H= Eb + P

The operators home commutation relations.

b , c as creation operatorsI = ad Ee b , cop as ampibilation operators

↳ 10 = - Pip- Fermi-Dinoc Statistics !Particle states : Ip', =bos pas b D



Dinac's Interpretation
Dinac's denination of his famous equation did not anise from group theory and Lagangions but nather from modifications of Schnodinger's Equation:

Dinoc noticed that :

1 Schrodinger's equation is non relativistic as it is based on themon relativistic kimetic emengy
2) Relativistic theories based on scalan fields do not satisfy total probability conservation

Let's analyse both problems separately
I Schnodinger's equation is non relativistic

2Non-Relativistic free particle Skinetic Energy: E pro · Non-Relativistic Eg . i = HU = (p3/2m)
Relativistic free particle (kimetic emeng: Ep on Sch

. Equation cannot be relativistic

2 Second Onder Laghongions do not conserve probability
Schnodinger's Equation : i HP

Probability's rate of charge : CHE INSIE CAL SPICHACCIATHIN
As His helition a .e. HEH we have PC = O ond probability is conserved

complex field
Klein-Gondon Equation: Co = +o = 0

Probability's hate of change : P( =<01 =CI + <I Fo in general

Dinoc's Approach
Dinoc imposed requirements on the equation
· Must be finst order im Time

· Hamiltonian must be Hermitian

· Hamiltonion must be able to reproduce p + m? when squared

He thus modified Sch
. equation as follows i HYF ICC. ps + mB Y

Ha= pi + m2 = (2: p) +m2 + c(2 p)(Bo + mBc (2 p) =

Iil pinee
The condition them are. Si =1 and S , B0
These conditions cannot be satisfied bynumber but only by matrices. BC , JO) where foto and j = jad
It follows than that :ioI a CiCibo = o Dinoc Equation !

Interpretation
Dinoc denined the equation from the single particle Hamiltoncam and tus viewed it as such

However we know it as a classical field that must be quantized

In the interpretation of p as a single particle state
,

the plane wore solutions are viewed as energy eigenstates
> Positive frequency solutions: y = aspx G=E Positive energy solution

Negative frequency solutions. Le c EY Negative Energy solution

The spectrum of solutions is once again unbounded from below as the equation allows for negative emegg solutions
.

However, as these particles are fernions (byhand oddition by Disoc they obey Pauli's exclusion principle .

Dinoc angwed that the negative emengy states were fully

occupied , leaning only positive enengy states as observable states and the apparent neutral change is actually only a relative neutrality wat the Dinoc Seat of

negative energy states. The fully occupied negative enengy states moke sense as if teme were states onoilable positive emengy states would decay to

negative energy state. If tere were infinite states available decay nate would be infinite (amacceptable)
The Dinoc Sea picture made a shocking Prediction .

When a negative energy state is excited to a positive enengy state
,

a hobe is left behind . The hole would

home same propenties as the electron
, positive energy but opposite change (a .e

. position) as we removed a negative emengy state with negative change
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Ferman Stücklebeng Interpretation

Quantun Field Theory Interpretation
Dinoc's interpretation is not completelyconnect

. It is inconnect to view the Dinoc equation as a single particle equation . Signs of this com be found in the

Dinac Sea" approach as it sees the existence of antiparticles as a panely feraconic chanocteristics
.

Ferraions and Bosons bone both ontiparticles .
In oddition

,

te Dinoc Sea has too mony canreats

The connect interpretation views the Dinoc equation as the equation of a classical field Q with positive emengy solutions only CH is bounded from below

whose quantization naturally beads to particles and ontiparticles being created as result of excitation of thenocum .



Propagatons
Ferraionic Propagator SGS. i S (xG) = EYX) , PCLS
It follows that : <S (x -g) = (c0x + m)D(x- y) - D(y- x)

.

where D(x - g) = fE

Causality:

For spocelike internals i. e. (x-g) 0 we have D (X- g) - D(g- x) = 0

Thus :

Bosons : IO(X) , (y). = 0 if (-) Operators always commute outside of lightcome

Ferions:(2() , YB(y)] = 0 if (x-y) <

· Why?
-

woyfrom singulanities : (idx- m)S(x- g) = 0

Computations

i Sa(- y) = <Ya() , YB(y)] = Ya(y) (89)+ + 4 (y) (89 Y2() =

-
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.

(x - y) - D(y- x)

(ibx - m)S(x- y) = - i(i0x -m) : S(x- y) = - i (ibx -m)(iby + m), (x - y) - D(y- x). =

= i (6 +m))
=

D(x- y) - D(g- x) = c (yMGy, Dy-Dy- ip( :

-

2
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e
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-

( = 18%p + (j: p. + m
>

e
ip(x-y)

+ [- (yy pz + (jijpi + m2 e ip(y-7)) =

-Pe -po- (eip(
-3)

+ e-<p(y-7) = 0 for on shell calculations

DihocE
(ibx - m)S(x- y) = - i (iby-m)(y(x) , y(y)] = -i (i) -m)(y(x)(y) + (y)y(x) = - i

.

ibx-m(y(x) (y) - i (y) -
(ixx- m)y(x)

.

= 0


